
CSC 120 ICA-13

Work with your neighbor. (This will be graded for participation only.)

For reference, here are diagrams of a Python list and a LinkedList having the integers 10,20
and 30 as elements:

1. The LinkedList code includes a method add() for adding to the front of a LinkedList:

class Node:
 def __init__(self, value):
 self._value = value
 self._next = None

class LinkedList:
 def __init__(self):
 self._head = None

 def add(self, new):
 new._next = self._head
 self._head = new

Draw a diagram that shows the linked list alist and the node n after the statements below are
executed:
>>> alist = LinkedList()
>>> n = Node(14)

Draw a diagram that shows the list alist after the statement below is executed:
>>> alist.add(n)

Draw a diagram that shows the node n after the statement below is executed:
>>> n = Node(6)

Draw a diagram that shows the list alist after the statement below is executed:
>>> alist.add(n)

Note: You may draw the diagram without the box for the list head and without labelling the last node’s
_next reference with None.

2. This code has a method for traversing a LinkedList to print all node values.

class Node:
 def __init__(self, value):
 self._value = value
 self._next = None
class LinkedList:
 def __init__(self):
 self._head = None

 def add(self, new):
 new._next = self._head
 self._head = new

 def print_elements(self):
 current = self._head
 while current != None:
 print(str(current._value))
 current = current._next

Using the LinkedList and Node class definitions above, write a method double() for the
LinkedList class that doubles the value attributes of all nodes in a LinkedList. You may
assume that for each node in the list, the value attribute is an integer.

ANS:

 def double(self):
 current = self._head
 while current != None:
 current._value = current._value * 2
 current = current._next

3. The code in Problem 2 has a method print_elements(self)for traversing a
LinkedList to print all node values. Let’s go through the steps to do that for the list below:

When the code L.print_elements() is called, self will refer the list L. The slides
showed how to set a reference to the first element of the list, and continually change that
reference to “walk” through the list. Using the variable current, what is the code to set
current to the first element of the list? Show the code and draw the list with current set
to the first element:

ANS: The code in lecture was written as a method; self will reference the list L above.

current = self._head

What is the code to move current forward to the next (second) node? Show the code and the
resulting diagram after moving forward again:

current = current._next

Show the code to move current forward to the next (third) element and the diagram:

current = current._next

Show the code to move current forward one more time. What is the value of current is at
this point?

current = current._next

current is now None

4. (Extra.) Using the LinkedList and Node class definitions above, write a method
print_evens(self) for the LinkedList class that prints the even values of the nodes.
If there are no even values, the method does not print anything. You can assume that all values in
the nodes are integers.

ANS:

 def print_evens(self):
 current = self._head
 while current != None:
 if current._value % 2 == 0:
 print(str(current._value))
 current = current._next

