
 1

CSC 120 ICA-14

Work with your neighbor. (This will be graded for participation only.)

1. Here is a first pass at a method to add a new node to the end of a LinkedList:

 def add_to_end(self, new):
 current = self._head
 prev = None # initialize prev
 while current != None:
 prev = current # keep track of previous node
 current = current._next
 prev._next = new # add new to the end

Suppose we have the linked list and new node shown below:

Walk through the code for the call L.add_to_end(new). (Remember that self will refer to L.)
Draw the diagrams showing the current and prev references.

 2

2. Download the code for ICA-14 from the class website: ICA-14-starter.py. This code has the
classes defined for LinkedList and Node.

a) In main(), create a linked list called my_ll. Create a node that has an integer as a
value. Add that node to my_ll. Do this two more times so that my_ll has three
elements that are all integers.

b) Use the method print_elements() to print out the linked list elements.

Note: This method prints the _value attribute of each node on a separate line.

c) Next, print the linked list my_ll using this line of code:

print(my_ll)

Note: We know that print() will use the __str__() method defined in the class.
Take a close look at __str()__ in the LinkedList class. Notice that it loops through
the linked list and calls str() on each node.

d) Take a pic of the output generated for this problem so far to use as the solution to this
problem. (If you don’t have your laptop, write out what the code for main would be.)

3. Define a new method called incr(self) that increments each element of a linked list by 1.
Use print_elements() as a guide for how to iterate through a linked list.

a) Call incr() on your linked list.

 3

b) Use print() to show how the linked list elements have been modified.
c) Take a pic of output generated for this problem so far to use as the solution to this

problem. (Or write the code for incr()below.)

4. Define a new method called replace(self, val1, val2) that iterates through a linked
list and replaces all of the _value attributes that equal val1 with val2.

a) Call replace() on your linked list.
b) Use print() to show how the linked list elements have been modified.

5. Type in the code for add_to_end(self, new). See slide 106 for reference.

 4

a) Create a new node n and call add_to_end(n) to add that to your linked list.
b) Use print() to show how the linked list has changed.

6. Challenge. Write a method remove_first(self) that removes the first element of a linked
list and returns the node removed. If the list is empty, the method returns None.

a) Call remove_first() on your linked list.
b) Use print() to show how the linked list has changed.

