
 1

CSC 120 ICA-15

Work with your neighbor. (This will be graded for participation only.)

1. Below is the code from last time to add to the end of a linked list:

 def add_to_end(self, new):
 current = self._head
 prev = None # initialize prev
 while current != None:
 prev = current # keep track of previous node
 current = current._next
 prev._next = new # add new to the end

Modify the code add_to_end(self, new) to handle the case of inserting into an empty
list. Hint: If the list is empty, the code would be just like adding to the front of a linked list.
ANS:

 def add_to_end(self, new):
 if self._head == None: # the list is empty
 self._head = new # add new to the front
 else:
 current = self._head
 prev = None # initialize prev
 while current != None:
 prev = current # keep track of previous node
 current = current._next
 prev._next = new # add new to the end

2. Below is the code for get_element(self, n), which returns a reference to the node at
position n in a linked list:

 def get_element(self, n):
 elt = self._head
 while elt != None and n > 0:
 elt = elt._next
 n ‒= 1

 return elt

Draw a diagram for a linked list called my_ll that has four elements. Walk through the code for
my_ll.get_element(2) and show on the diagram how the variable elt advances; show
what that value of n is when the element at position 2 is reached and show which node is
referred to by elt (which is the node that is returned).

 2

ANS:

After the first line of code is executed, the diagram looks like this:

After the loop is executed once, the diagram looks like this:

After the loop is executed twice, the diagram looks like this:

After this iteration, the condition of the while loop fails since n == 0 and elt is returned by the
method. Note that elt is a reference to the 3rd element of the list.

 3

Are there any issues with this code? What happens if you ask for the node at position 6 in
my_ll?

ANS:

There are no issues, per se. But it doesn’t exactly match the behavior of indexing for a Python
list. In Python, referencing beyond the length of the list will result in a runtime error. This
function with return None for the call my_ll.get_element(6).

3. Define a new method called sum_even_positions(self) that returns the sum of the
elements of a linked list at the even positions in the list. Node positions begin at 0. Return 0 if the
list is empty.

ANS:

 # sum_even_positions(self):
 def sum_even_positions(self):
 total = 0
 pos = 0
 current = self._head
 while current != None:
 if pos % 2 == 0:
 total += current._value
 current = current._next
 pos += 1

 return total

4. Below is the code for find(self, item), which returns True if item is an element of the
linked list and False otherwise:

 def find(self, item):
 current = self._head
 while current != None:
 if item == current._value:
 return True
 else:
 return False

 current = current._next

a) There is a common logic error in this code. What is the bug?

ANS:

 4

The if/else in the while loop will guarantee that that the loop is executed only once, and
only one element of the list will be seen.

b) Rewrite the code with the bug fixed:

ANS:

 def find(self, item):
 current = self._head
 while current != None:
 if item == current._value:
 return True
 current = current._next
 # if we get here, item was not found in the list
 return False

5. Suppose that we modify the linked list class to maintain a tail reference. The modified code for
the LinkedList class and a sample linked list are shown below:

Write the append(self, new) method for the class.

ANS:

def append(self,new):
 if self._head == None:
 self._head = new
 self._tail = new
 else:
 self._tail._next = new

 self._tail = new

