
CSC 120 ICA-21

Work with your neighbor. (This will be graded for participation only.)

1. We have written the recursive function version of sumlist(L) that returns the sum of the
elements in L. Re-write the recursive part in two different ways:
a. Recurse on the first through second to the last elements and add the last element

ANS:

def sumlist(L):
 if L == []:
 return 0
 else:
 return sumlist(L[:-1]) + L[-1]

b. Recurse on each half and add them together

ANS:

def sumlist(L):
 print(L) # run this with a print to see the breakdown
 if L == []:
 return 0
 elif len(L) == 1:
 return L[0]
 else:
 mid = len(L) // 2

 return sumlist(L[:mid]) + sumlist(L[mid:])

2. Write a recursive function bin_search(alist, item) that searches for item in alist
and returns True if found and False otherwise.

ANS:

def bin_search(alist, item):

 if alist == []:
 return False
 mid = len(alist)//2
 if alist[mid] == item:
 return True

 else:
 if item < alist[mid]:
 return bin_search(alist[:mid],item)
 else:

 return bin_search(alist[mid+1:], item)

3. On the last ICA, you wrote sum_cols(grid, n) that sums column n in a grid:

def sum_cols(grid, n):
 if len(grid) == 0:
 return 0
 else:
 return grid[0][n] + sum_cols(grid[1:], n)

Now consider summing along the diagonal. Write a recursive function sum_diag(grid) that
returns the sum of the diagonal from upper left to bottom right in a grid, i.e., it sums
grid[0][0], grid[1][1], and so on. You may assume the grid is square.

Question: You can slice the grid (list of lists) in each round of recursion as usual. That means
that grid[0] is the next row in each recursive call. But how will you know which column you
need to index into for each recursive step?

Hint: Have sum_diag(grid) call a “helper” function called sum_diag_helper that is
recursive. It has a new argument, col, that keeps track of the current column:
sum_diag_helper(grid, col). Call the helper function with 0 as the column number to
start with.

def sum_diag(grid):

 return sum_diag_helper(grid, 0) # call the helper function

sum_diag: a helper function
the helper function has an additional argument, col
col will keep track of the current column
in the diagonal
def sum_diag_helper(grid, col):

 # your code goes here

ANS:

def sum_diag_helper(grid, col):

 # your code goes here

 if grid == []:

 return 0
 else:
 return grid[0][col] + sum_diag_helper(grid[1:], col + 1)

NOTE: I combined problems 4 and 5 and moved them to ICA-22.

