
CSC 120 ICA-22

Work with your neighbor. (This will be graded for participation only.)

1. Below is a recursive function zip(a,b) where a and b are lists of any type. The function
zip(a,b) returns a list of 2-tuples where the first tuple is (a[0],b[0])), the second is
(a[1],b[1]), etc. Zipping stops when the shorter list runs out. For example, if len(a) is 3
and len(b) is 2, then len(zip(a,b)) is 2.

Example calls:

zip([1,2,3],[4,5,6]) à [(1,4), (2,5), (3, 6)]

zip([1,2,3,4,5],['a','b','c','d','e']) à
 [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd'), (5, 'e')]

zip([2,4,6], ['fall','leaves'] à [(2, 'fall'), (4, 'leaves')]

zip([], [4,5,6]) à []

def zip(a,b):
 if a == [] or b == []:
 return []
 else:
 return list((a[0], b[0])) + zip(a[1:], b[1:])

Now let’s rewrite zip using a helper function. We will call zip(a,b) as before, but the new
version will call a helper function zip_helper(a,b,result) that takes an additional list
argument called result.

Before each recursive call, zip_helper(a,b,result) will modify result by
concatenating the new tuple of (a[0], b[0])to result and then pass the modified
result list to the recursive call.

def zip(a,b):
 # call the helper function with an empty list
 return zip_helper(a,b,[])

def zip_helper(a,b,result):
 # your code goes here

2. Tree terminology:

sibling – a set of nodes that all share the same parent

degree – the number of children a node has

edge/path – the line that connects a parent to its child

level – the number of "edges" from the root to a node

height – the maximum of the levels of the nodes in the tree (or, the length of the longest path
in the tree)

What are the leaves of this tree? _____________________________

Which nodes have multiple children? ______________________________

Which nodes have multiple parents? ______________________________

What is the root of this tree? _____________________________

Which nodes are siblings of 10? _____________________________

What is the level of 6? ______________________________

What is the height of this tree? ______________________________

3. Draw the tree that represents the main folders (directories) and files on your computer.

4. Is the following a tree? Discuss with your neighbors. Explain why or why not.

5. Draw a binary tree with 7 nodes. Make it as wide as you can, so that the tree is as short as
possible.

How many nodes are at each level?

How many nodes would you need to add in order to fill up another level?

6. Using the same 7 node values as the tree above, draw another tree but make it has tall as
possible.

