
CSC 120 ICA-24

Work with your neighbor. (This will be graded for participation only.)

1. There are three common ways to traverse a tree. For a binary tree, list the order of visiting the
nodes and the children for each of these traversals.

ANS:

pre-order: node, left, right

in-order: left, node, right

post-order: left, right, node

2. Give the above traversals for the following tree:

ANS:

pre-order: 6, 3, 5, 10, 5, 23

in-order: 5, 3, 10, 6, 23, 5

post-order: 5, 10, 3, 23, 5, 6

For the remaining problems assume that a BinaryTree class has been defined with attributes
_value, _left, and _right. The following getters have also been defined in the class:

 def value(self):
 return self._value

 def left(self):
 return self._left

 def right(self):
 return self._right

Also, for reference, here is the code for an inorder traversal of a binary tree:

def inorder(tree):
 if tree == None:
 return
 else:
 inorder(tree.left())
 print(tree.value())
 inorder(tree.right())

3. Write a function postorder(tree)that prints the nodes of a tree in postorder.

ANS:

def postorder(tree):
 if tree == None:
 return
 else:
 postorder(tree.left())
 postorder(tree.right())
 print(tree.value())

4. Write a function sum_leaves(tree) that returns the sum of the values of the leaf nodes in
the binary tree tree.

ANS:

def sum_leaves(tree):
 if tree == None:
 return 0
 if tree.left() == None and tree.right() == None:
 return tree.value()
 else:
 return sum_leaves(tree.left()) +
 sum_leaves(tree.right())

5. Write a function inorder_str(tree) that produces a string of the inorder traversal of the
binary tree argument tree. For the tree below,

The string returned would be

“2,3,5,8,9,11”

ANS:

def inorder_str(t):
 if t == None:
 return ""

 instr = ""
 if t._left != None:
 instr += inorder_str(t._left) + "," + str(t._value)
 else:
 instr += str(t._value)
 if t._right != None:
 instr += "," + inorder_str(t._right)

 return instr

