
CSC 120 ICA-26

Work with your neighbor. (This will be graded for participation only.)

1. Write a recursive function notate_leaves(bt) that takes a binary tree bt and produces an
inorder traversal of the tree, with “L” following any leaf node. The output should print the value
of each node, one per line. For example, given the following string representation of a tree bt,

the output would be as follows:

2L
9
8L
3
24L
7

ANS:

def notate_leaves(t):

 if t == None:
 return
 if t._left == None and t._right == None:
 print(str(t._value) + "L")
 else:
 notate_leaves(t._left)
 print(t._value)
 notate_leaves(t._right)

2. Write a function print_preorder(tree), which prints a preorder traversal of the values
in the tree, one value per line. Use a recursive solution.

ANS:

def print_preorder(tree):
 if tree == None:
 return
 else:
 print(tree.value())

 print_preorder(tree.left())
 print_preorder(tree.right())

3. Write a function preorder_list(tree) that creates and returns a list of the preorder
traversal of the binary tree tree. Use a recursive solution.

ANS:

def preorder_list(tree):
 if tree == None:
 return []
 else:
 return [tree.value()] + preorder_list(tree.left()) +

 preorder_list(tree.right())

4. Given the preorder and inorder traversals below, draw the resulting tree.

Preorder: 5, 2, 8, 3, 4, 9, 11

Inorder: 8, 2, 3, 5, 4, 11, 9

 ANS:
 5
 / \
 2 4
 / \ \
 8 3 9
 /
 11

5. Suppose that you have an empty BST (binary search tree). Insert the following values into the
tree, in this order: 12, 80, 76, 62, 5, 68, 85, 30. Draw the resulting tree.

ANS:

 12
 / \
 5 80
 / \
 76 85
 /
 62
 / \
 30 68

Give the preorder and inorder traversals of the tree.

ANS:

Preorder: 12, 5, 80, 76, 62, 30, 68, 85

Inorder: 5, 12, 30, 62, 68, 76, 80, 85

Notes for problems 6 and 7: In class and lecture, we have seen code to insert into a binary
search tree. That code was recursive since we had to traverse the tree to find the correct place to
insert a new value. This is not necessary when inserting into a “regular” binary tree.

 Use the following definition of a BinaryTree class:

class BinaryTree:
 def __init__(self,value):
 self._value = value
 self._left = None
 self._right = None
 def value(self):
 return self._value

 def left(self):
 return self._left

 def right(self):
 return self._right

6. Write a method insert_right(self, value) that inserts a binary tree node in the right
child of a BinaryTree.

Hint: There are two cases for insertion. First, the node may have no existing right child. In that
case, simply create a new BinaryTree and add it to the tree as the right child. In the second
case, there is an existing right child. Just as with adding a node to a linked list, you must be
careful to get the order of the assignments correct so that you don't overwrite the reference in the
existing right child before using it.

ANS:

 def insert_right(self, value):
 if self._rchild == None:
 self._rchild = BinaryTree(value)
 else:
 t = BinaryTree(value)
 t._rchild = self._rchild
 self._rchild = t

7. Assume that you have also written a method for insert_left(self, value). Use the
BinaryTree class and methods to create the following tree:

(I.e., create a BinaryTree and use the insert_left() and insert_right() methods
to make the tree.)

ANS:

tree = BinaryTree(6)

tree.insert_left(15)

tree.insert_right(2)

Now do one more insertion to make the tree look like this:

ANS:

tree.right().insert_right(8)

