
CSC 120 ICA-29

Work with your neighbor. (This will be graded for participation only.)

1. Download https://www.obagy.com/cs120/LECTURES/sumv1.py and

https://www.obagy.com/cs120/LECTURES/sumv2.py.

Add calls to run each version for the values 10,000, 100,000, and 1,000,000. Answer the
questions below.

ANS:

What observations do you have about the efficiency of sumv1.py vs. sumv2.py?

sumv1.py is less efficient than sumv2.py as the input gets larger

Do you notice a pattern when increasing the input size for sumv1.py?

‒ For sumv1.py, as we increase n, the running time increases. The running time
increases in proportion to n.

‒ For sumv2.py, as we increase n, the running time stays the same.

2. Consider these two algorithms for searching for a word, my_word, in a dictionary (a
physical dictionary, which is of course sorted):

• Algo 1: search from the beginning

 start at the first word in the dictionary

 if the word is not my_word, then go to the next word

 continue in sequence until my_word is found

• Algo 2: start at the middle of the dictionary

 if my_word is greater than the word in the middle,

 start with the middle word and continue from there to the end of the dictionary

 if my_word is less than the word in the middle,

 start with the middle word and search from there to the beginning of the dictionary

ANS:

a) Which is better, Algo 1 (search from the beginning) or Algo 2 (search from the middle)?
Explain your answer.

Most of the time, Algo 2 will be more efficient because for all search words that lie in the
second half of the (physical) dictionary, you will eliminate having to check all the words
in the first half of the dictionary.

b) Regardless of which algorithm that you chose, is there ever a scenario where the other
one is better? If so, explain the scenario.

For words that lie in the first quarter of the dictionary, Algo 2 would be less efficient
because you will first check all the words from the midpoint to the beginning of the
second quarter of words before getting to the first quarter of the dictionary.

c) When considering which is better, what measure are we using?

We are measuring—implicitly counting—the number of comparisons (does my_word
equal the current word in the dictionary?) that are made before finding the search word.

3. Use the analysis of the lookup() example as reference to answer the questions below:

a) What is the worst-case running time of the following code fragment expressed in
terms of n?

 for i in range(n):
 k = 2 + 2

ANS:
for i in range(n): n: 1

range(): 1
in: 1
for: 2

 k = 2 + 2 +: 1
 =: 1

1 iteration: 7 ops
n iterations: 7n ops

Therefore, the worst-case running time for n numbers is 7n

b) What is the worst-case running time of the following code fragment expressed in
terms of n?

 a = 5
 b = 10
 for i in range(n):
 x = i * b
 for j in range(n):
 z += b

ANS:
a = 5 =: 1
b = 10 =: 1 total of 2 ops

for i in range(n): n: 1

range(): 1
in: 1
for: 2

 x = i * b i: 1
 b: 1
 *: 1
 =: 1

for j in range(n): n: 1

range(): 1
in: 1
for: 2

 z += b z: 1

 b: 1
 +: 1
 =: 1
 at the top 2 ops
1st loop: 1 iteration: 9 ops
 n iterations: 9n ops
2nd loop 1 iteration: 9 ops
 n iterations: 9n ops

Therefore, the worst-case running time for n numbers is 18n + 2

