
CSC 120 ICA-3

Work with your neighbor. (This will be graded for participation only.)

1. This solution uses split() to create a list from each line of input and then iterates over each
element of the list to strip the punctuation.

ANS:
def print_some_words(filename,n):
 textfile = open(filename)
 for line in textfile:
 line = line.split()
 for word in line:
 clean_word = word.strip(".,?;")
 if len(clean_word) >= n:
 print(clean_word)

2. There are two things that have to be worked out for this problem: (1) the coordinates for the
beginning of the diagonal for a given offset; and (2) the change in x- and y-coordinate values
between successive elements of any diagonal.

We can figure out the first quantity by just examining some different offset values; the key is to
notice that negative offsets have to be treated differently than positive offsets. For any given
diagonal, we can figure out the change in x- and y-coordinates by stepping through successive
elements of a diagonal a few times. Once these two things are done by hand (on paper),
programming up the solution is easier.

As a first step, write the loop for the positive offsets, and then write the loop for the negative
offset:
 sum = 0
 if offset >= 0:
 # write the code for the positive case
 else:
 # write the code for the negative case

ANS:

def sum_diag_UL_LR(grid, offset):
 sum = 0
 if offset >= 0:
 i = 0
 # ensure both indexes stay within bounds
 while i < len(grid) and offset < len(grid):
 sum += grid[i][offset]
 i = i + 1
 offset = offset + 1

 else:
 i = -offset
 j = 0

 # ensure both indexes stay within bounds
 while i < len(grid) and j < len(grid):
 sum += grid[i][j]
 i = i+1
 j = j+1

 return sum

Once you have written both loops, you may notice that you can use only one loop if you initialize the
indices for the row and columns correctly. Here is a combined solution:

def sum_diag_UL_LR(grid, offset):
 sum = 0
 if offset > 0:
 i,j = 0,offset
 else:
 i,j = -offset,0
 # ensure both indexes stay within bounds
 while i < len(grid) and j < len(grid):
 sum += grid[i][j]
 i, j = i+1, j+1

 return sum

3. Write a function print_keys(d) that prints the keys in the dictionary d. For example, if the
dictionary passed in is

{"I": 1, "V": 5, "X": 10, "L": 50}

then the function prints the following:

I
V
X
L

ANS:

def print_keys(d):

for key in d:
 print(key)

