
CSC 120 ICA-30

Work with your neighbor. (This will be graded for participation only.)

1. For each code fragment below, state its worst-case big-O complexity.

a)
n = int(input())
while n > 0:
 print(n)
 n -= 1

b)
n = int(input())
n = n/2
while n > 0:
 print(n)
 n -= 1

c)

n = int(input())
if n % 2 == 0:
 for i in range(n):
 x = x + 1
else:
 for i in range(n):
 for j in range(n):
 x = x + 1

d)
m = 100
for x in numlist1:
 for y in range(m):
 print(x + y)

e)
def count(char, lc_str):
 num = 0
 for i in range(len(lc_str)):
 if char == lc_str[i]:
 num += 1
 return num

2. The following function takes a list of integers and performs some kind of mystery
transformation on the list. First, determine what the function does. Second, determine its
worst-case big-O complexity. (If you recognize what the function does immediately,
don’t give the answer to your fellow tablemates. Let them work it out for themselves.)

def mystery_one(data):
 for i in range(len(data)):
 for j in range(len(data)-1):
 if data[j] > data[j+1]:
 data[j],data[j+1] = data[j+1],data[j]

(Note: We may not have time for all of the problems below.)

3. Given a list alist, write a function have_two_greater(alist) that returns a
new list that contains all of the elements in alist which have at least two elements that
are greater than itself.
Requirements:

• Do not use sorted() or sort() or sort the list yourself
• Don’t use built-in max()
• Don’t use pop() or delete – that is, don’t modify the argument list passed in

What is the complexity of your function? Why?

4. Given a list alist, write a function second_largest(alist) that finds the
second largest element of the list argument alist.

What is the complexity of your function? Why?

5. Given your solution to problem 4, can you write a solution for
have_two_greater(alist) that is O(n)?

