
 1

CSC 120 ICA-31

Work with your neighbor. (This will be graded for participation only.)

Problem 1. Merging two lists. Determine the complexity of the merge() function below, which
is an iterative solution to merging two sorted lists.

def merge(in1, in2, output):

"""merges two input lists into an output list
in1, in2 – the sorted input lists
output - a list whose length accommodates both lists
 (the elements of output will be overwritten)
"""
assert len(output) == len(in1) + len(in2)

pos1 = 0
pos2 = 0
while pos1 < len(in1) and pos2 < len(in2):
 if in1[pos1] <= in2[pos2]:
 output[pos1+pos2] = in1[pos1]
 pos1 += 1
 else:
 output[pos1+pos2] = in2[pos2]
 pos2 += 1

if one of the lists was shorter, add any
of the leftover elements to the output list
while pos1 < len(in1):
 output[pos1+pos2] = in1[pos1]
 pos1 += 1
while pos2 < len(in2):
 output[pos1+pos2] = in2[pos2]
 pos2 += 1

assert pos1+pos2 == len(output)

ANS:

Complexity of merge(): O(n)
The function has two while loops that are not nested. It writes to every position of output, whose
length is the sum of both list lengths. The complexity is the O(n), where n is the length of output.

 2

Problem 2. In this problem, you will write two different versions of a function and determine their run-time
complexity. Write a function has_dups(alist) that takes a list of integers and returns True if alist
contains duplicate values and False otherwise. If alist is empty, the function returns False.

a) In the first version, use nested loops. What is the complexity of your function?

ANS:

def has_dups(alist):
 for i in range(len(alist)):
 for j in range(len(alist)):
 if i != j and alist[i] == alist[j]:
 return True
 return False

The complexity of the function is O(n2).

b) In the second version, use a dictionary to keep track of whether a value has been seen before.

Once a value has been seen, the function can immediately return.
ANS:
def has_dups(alist):
 counts = {}
 for elem in alist:
 if elem in counts:
 return True
 else:
 counts[elem] = 1
 return False

c) Since the function only iterates through alist once (worst case), its complexity appears to be

O(n). What would we need do know (that we don’t know yet!) about dictionary operations in order
to give a thorough answer?
ANS:
To determine the complexity of the solution above, we would need to know the complexity of the
operation

 elem in counts

which is looking up an element in a dictionary, and the complexity of
 counts[elem] = 1

which is inserting an element into a dictionary. Note: Later in the semester, we will explore the
implementation of dictionaries (which are called hash tables in most other languages) and
discover that both of these operations are O(1).

 3

Wait until we have covered linked list complexity before doing the next problem.

Problem 3. Write a method concat(self, list2) that concatenates the linked list list2
to the end of self.

ANS:
 def concat(self, list2):
 if self._head == None:
 self._head = list2._head
 return
 current = self._head
 prev = current
 while current != None:
 prev = current
 current = current._next
 prev._next = list2._head

What is the complexity of concat()?

O(n). We have to iterate to the end of the first list (self) in order to find the end and change the
reference of the last element to refer to the first element of list2.

