
CSC 120 ICA-32

Work with your neighbor. (This will be graded for participation only.)

1. The following definition for the LinkedList class includes an attribute for a reference to the
tail of the linked list, as shown in the diagram:

To properly maintain the tail reference whenever a linked list is modified, the linked list methods
have to be revisited and possibly modified. For example, we just saw in lecture the changes
needed two concatenate two lists.

The method append(self, new), appends Node new to the end of a linked list. Rewrite the
method to incorporate the changes needed to update the tail reference.

ANS:

 def append(self, new):
 if self._head == None:
 self._head = new
 self._tail = new
 else:
 self._tail._next = new
 self._tail = new

Why is the complexity of append() using a linked list with a tail reference O(1)?

ANS:

The linked list class maintains a reference to the tail of the list; you do not need to traverse the
linked list from the beginning in order to find the end (tail) of the list. The operations in the if
and else clauses above are all O(1), making the method append() O(1).

2. Using the LinkedList class above with a tail reference, answer these questions:

a) What is the complexity of a method remove_last(self) that removes the last
element of the list? Explain your answer.

ANS:

To remove the last element of the list, we need to set self._tail to reference of the
second-to-last node in the list. You need to traverse the entire list (except the last node) in
order to find the second-to-last node, which makes this method O(n).

b) Could we somehow change the LinkedList and/or Node classes to make
remove_last(self) O(1)? Explain your answer.

ANS:

To make remove_last(self) O(1), we would need to know—for every node—what
the previous node is. We would need to modify the Node class to have an attribute for
the previous node and change all of the Node methods to maintain the reference to the
previous node.

NOTE: Linked lists with next and previous attributes are called Doubly Linked Lists.

3. Another famous sorting algorithm is Quicksort. This sorting algorithm first partitions the list to be sorted
into two separate lists by comparing each element to a “pivot” value. Values less than or equal to the
pivot value are placed in one list, and values greater than the pivot are placed in a second list.

Write a function partition(alist, pivot) that partitions a built-in Python list alist
according to the integer pivot value pivot. Create two new lists and return them in a tuple. What is the
complexity of your partition function?

ANS:

def partition(alist, pivot):

 smaller = []
 larger = []

 for elem in alist:
 if elem <= pivot:
 smaller.append(elem)
 else:
 larger.append(elem)

 return (smaller, larger)

The for loop will iterate n times, where n is the size of the list. The statements in the body of the
loop are all O(1); as a result, this function is O(n).

Wait until we do Hashing before continuing.

4. Implement the Dictionary ADT as described in the lecture slides, with this simplification: the
dictionary is created as a fixed size, which is given when the Dictionary ADT is created. See the
Usage and Hint below to determine how to implement the ADT.

Usage:
>>> d = Dictionary(7)
>>>
>>> d.put('five', 5)
>>> d.put('three', 3)

Hint 1:
>>> d._pairs
[['five', 5], ['three', 3], None, None, None, None, None]

Hint 2:
You will need an attribute to keep track of the next available slot in the underlying list.

Hint 3:
If the Dictionary is created with capacity 7, the underlying list will look like this:

[None,None,None,None,None,None,None]

ANS:

class Dictionary:
 def __init__(self,capacity):
 # each element will be a key/value pair
 self._pairs = [None] * capacity
 self._nextempty = 0

 def put(self, k, v):
 self._pairs[self._nextempty] = [k,v]
 self._nextempty += 1

 def get(self, k):
 for pair in self._pairs[0:self._nextempty]:
 if pair[0] == k:
 return pair[1]
 return None

