
CSC 120 ICA-35

Work with your neighbor. (This will be graded for participation only.)

1. You are given the following hash function:

hash(key)= key % 7
Insert the keys 15, 30, 28, 48 into the hash table below. Use linear probing to resolve
collisions.

ANS:
0 1 2 3 4 5 6
28 15 30 23 48

a) Now insert (put) 23 into the hash table. What is the probe sequence for this insertion?

ANS: 2, 1, 0, 6, 5

b) If you lookup (get) 23 in the hash table, what is the probe sequence?

ANS: 2, 1, 0, 6, 5

***Wait for lecture to continue before doing the next problems.

2. The function char_count(text) below returns a dictionary containing a mapping of each
character in text and the count of the number of occurrences in text for the character:

def char_count(text):
 cdict = {}
 for char in text:
 if char in cdict:
 cdict[char] = cdict[char] + 1
 else:
 cdict[char] = 1

 return cdict

Usage:

>>> char_count("to be or not to be")

{'t': 3, 'o': 4, ' ': 5, 'b': 2, 'e': 2, 'r': 1, 'n': 1}

	

a. Write a new version of the function, char_countv2(text), that returns a dictionary
that maps each character in text to a list of integers, where the length of the list is the
number of occurrences of the character in text.

Usage:

>>> char_countv2("to be or not to be")

{'t': [1, 1, 1], 'o': [1, 1, 1, 1], ' ': [1, 1, 1, 1, 1], 'b': [1, 1],
'e': [1, 1], 'r': [1], 'n': [1]}

ANS:

def char_countv2(text):
 cdict = {}
 for char in text:
 if char in cdict:
 val_list = cdict[char] #get()
 val_list.append(1)
 else:
 cdict[char] = [1] #put()

 return cdict

b. Assume that you have a Dictionary ADT that holds key/value pairs and provides the
following operations:

• put(key, value)
o makes an entry for a key/value pair
o assumes key is not already in the dictionary

• get(key) looks up key in the dictionary
o returns the value associated with key (and None if not found)

• defines __contains__() so that
o in returns True if a key is in the Dictionary and False otherwise.

• Note: a Dictionary is of fixed sized and is set to its capacity when created
• Usage:

>>> d = Dictionary(7)
>>> d.put('t', [1])
>>> 't' in d
True
>>> d.put('o', [1])
>>> val_list = d.get('t')
>>> val_list
[1]

Modify your function char_countv2(text) to use the Dictionary ADT defined above
instead of a Python built-in dictionary. Call this version char_countv3(text).

ANS:

'''
This version uses the Dictionary ADT.
'''
def char_countv3(text):
 cdict = Dictionary(31)

 for char in text:
 if char in cdict: # this works because of __contains__()
 val_list = cdict.get(char)
 val_list.append(1)
 else:

 cdict.put(char,[1])

3. We have 60,000 items to store in a hash table using open addressing with linear probing and
we want a load factor of .75.

How big should the hash table be?

 ANS: 80,000

Note: You get 80,000 by using the definition of load factor, which is N/M (number of keys /
table size). But you would not actually use 80,000; rather you would use the first prime
number larger that 80,000.

4. Use the hash function hash(key) = key % 7 and separate chaining to insert the keys
below into the hash table. On a collision, add to the front of the linked list.

15, 30, 16, 8

0 1 2 3 4 5 6

 | |
 8 16
 | |
 15 30

