
CSC 120 ICA-35

Work with your neighbor. (This will be graded for participation only.)

1. You are given the following hash function:

hash(key)= key % 7
Insert the keys 15, 30, 28, 48 into the hash table below. Use linear probing to resolve
collisions.

0 1 2 3 4 5 6

a) Now insert (put) 23 into the hash table. What is the probe sequence for this insertion?

b) If you lookup (get) 23 in the hash table, what is the probe sequence?

***Wait for lecture to continue before doing the next problems.

2. The function char_count(text) below returns a dictionary containing a mapping of each
character in text and the count of the number of occurrences in text for the character:

def char_count(text):
 cdict = {}
 for char in text:
 if char in cdict:
 cdict[char] = cdict[char] + 1
 else:
 cdict[char] = 1

 return cdict

Usage:
>>> char_count("to be or not to be")

{'t': 3, 'o': 4, ' ': 5, 'b': 2, 'e': 2, 'r': 1, 'n': 1}

	

a. Write a new version of the function, char_countv2(text), that returns a built-in
Python dictionary that maps each character in text to a list of integers, where the length of
the list is the number of occurrences of the character in text.

Usage:

>>> char_countv2("to be or not to be")

{'t': [1, 1, 1], 'o': [1, 1, 1, 1], ' ': [1, 1, 1, 1, 1], 'b': [1, 1],
'e': [1, 1], 'r': [1], 'n': [1]}

b. Assume that you have a Dictionary ADT that holds key/value pairs and provides the
following operations:

• put(key, value)
o makes an entry for a key/value pair
o assumes key is not already in the dictionary

• get(key) looks up key in the dictionary
o returns the value associated with key (and None if not found)

• defines __contains__() so that
o in returns True if a key is in the Dictionary and False otherwise.

• Note: a Dictionary is of fixed sized and is set to its capacity when created
• Usage:

>>> d = Dictionary(7)
>>> d.put('t', [1])
>>> 't' in d
True
>>> d.put('o', [1])
>>> val_list = d.get('t')
>>> val_list
[1]

Modify your function char_countv2(text) to use the Dictionary ADT defined above
instead of a Python built-in dictionary. Call this version char_countv3(text).

'''
This version uses the Dictionary ADT.
'''
def char_countv3(text):

3. We have 60,000 items to store in a hash table using open addressing with linear probing and
we want a load factor of .75.

How big should the hash table be?

4. Use the hash function hash(key) = key % 7 and separate chaining to insert the keys
below into the hash table. On a collision, add to the front of the linked list.

15, 30, 16, 8

0 1 2 3 4 5 6

