
 1

CSC 120 ICA-4

Work with your neighbor. (This will be graded for participation only.)

1. Write a function print_keys(d) that prints the keys in the dictionary d. For example, if the
dictionary passed in is

{"I": 1, "V": 5, "X": 10, "L": 50}

then the function prints the following:

'I'
'V'
'X'
'L'

ANS:

def print_keys(d):
 for key in d.keys():
 print(key)

2. Assume that the dictionary d and the list words are defined as follows:

>>> d = {}
>>> d['one'] = 1
>>> d['eight'] = 8
>>> d['two'] = 2
>>> d['seven'] = 7
>>> d['five'] = 5
>>>
>>> words = ["one","two","three","four","five", "six","seven","eight"]

a) Write a loop that prints the values of d that are even.

ANS:

for value in d.values():
 if value % 2 == 0:
 print(value)

b) Write a loop that iterates through words and prints True for elements that are keys in d
and False otherwise.

ANS:

for elem in words:
 print(elem in d)

 2

3. Write a function key_of_max_value(adict) that finds the maximum of all the values in
the dictionary adict and returns the corresponding key. For example, if the dictionary passed
in is

{"hello" : 34, "sunny" : 51, "the" : 82, "street" : 13}

then the function returns the key "the". All the dictionary values are >= 0.

Note: You’ll have to iterate through the dictionary and keep track of the maximum value seen so
far, but also keep track of the corresponding key for that value.

ANS:

def key_of_max_value(adict):
 # assumes the dictionary has at least
 # one key

 max_val = 0

 for key in adict.keys():
 if adict[key] >= max_val:
 # replace the max_val and key
 max_val = adict[key]
 key_of_max_val = key

 return key_of_max_val

Note: What if you didn’t have the information that all values in the dictionary are >= 0? You
would then need to initialize max_val with a value that is in the dictionary:

 # get a list of all the keys
 all_keys = list(adict.keys())

 # use the first key in the list to initialize
 # the the max key and max value
 # assumes there is at least one key in the dictionary
 key_of_max_val = all_keys[0]
 max_val = adict[key_of_max_val]

4. Write a function identify_unique_words(slist) that takes a list of strings slist.
The function returns a dictionary where the keys are the strings in slist and the
corresponding values are 0, if the string occurred only once in slist, and 1 otherwise. For
example, if the function is called with the list

 3

['here', 'is', 'the', 'root', 'of', 'the', 'root', 'and', 'the']

then the dictionary returned is

{'here': 0, 'is': 0, 'the': 1, 'root': 1, 'of': 0, 'and': 0}

Notice that the strings that are unique in slist have a value of 0, and the words that are
duplicates have a value of 1.

ANS:

def identify_unique_strs(slist):
 all_words = {}
 for word in slist:
 if word in all_words:
 all_words[word] = 1
 else:
 all_words[word] = 0

 return all_words

