
CSC 120 ICA-41

Work with your neighbor. (This will be graded for participation only.)

1. Here is the example use of filter that filters out the words that start with a vowel:

 list(filter(lambda w: w[0] in "aeiou", alist)

For comparison, write this using a list comprehension below:

ANS:
[elem for elem in alist if elem[0] in "aeiou"]

2. Iterators) Below is the example user-defined iterator Reverse discussed in lecture:

class Reverse:
 def __init__(self, data):
 self._data = data
 # start the index at the end of the list
 # next() will decrement it before use
 self._index = len(data)

 def __iter__(self):
 return self

 def __next__(self):
 if self._index == 0:
 raise StopIteration
 self._index = self._index - 1
 return self._data[self._index]

Using this as a template, write an iterator called EveryOther that produces every other
element of a list. The first element produced is the element at index 0, the second element
produced is the element at index 2, and so on.

ANS:

class EveryOther:

 def __init__(self, data):
 self._data = data
 self._index = 0

 def __iter__(self):
 return self

 def __next__(self):
 if self._index == len(self._data):
 raise StopIteration
 index = self._index
 self._index += 2
 return self._data[index]

3. (Generators) Now write a generator called every_other() that is a generator version of

EveryOther.

ANS:

def every_other(data):
 for i in range(0,len(data), 2):
 yield data[i]

Final Exam Review
4. (Trees) Use the tree below to answer the following questions:

a) What is the height of the tree?

ANS: 3

b) Write the inorder traversal:
ANS:
2, 8, 9, 10, 4, 17, 5, 3, 6

c) Write the postorder traversal:

ANS:
 8, 2, 10, 9, 17, 3, 6, 5, 4

5. (ADT) For this problem, you are to implement an abstract data type named CharStack that
represents a stack of characters (strings of length 1).

Implement the following methods for the CharStack class:
o __init__: initializes an empty stack
o push: puts its argument, a character, on the top of the stack; returns None
o pop: removes the top character from the stack and returns it; returns None if the stack is empty
o swap: swaps the top two characters of the stack; always returns None; has no effect if the stack

has less than two elements
o is_empty: returns True if the stack is empty and False otherwise

Restriction: The CharStack class has only one attribute which is of type string.

Here is an example of usage:

>>> cs = CharStack()
>>> cs.push('p')
>>> cs.push('a')
>>> cs.push('n')
>>> cs.push('s')
>>> print(cs)
snap
>>> cs.swap()
>>> cs.pop()
'n'
>>> print(cs)
sap
>>> cs.is_empty()
False

>>>

ANS:
class Stack:
 def __init__(self):
 self._items = ""

 def push(self, item):
 self._items = item + self._items

 def pop(self):
 top = self._items[0]
 self._items = self._items[1:]
 return top

 def swap(self):
 self._items = self._items[1] + self._items[0] + \
 self._items[2:]

 def is_empty(self):
 return self._items == ""

 def __str__(self):
 return str(self._items)

