
 1

CSC 120 ICA-8

Work with your neighbor. (This will be graded for participation only.)

1. The code for the Counter class is given here for reference:

class Counter:
 def __init__(self, name):
 self._name = name
 self._count = 0

 def click(self):
 self._count += 1

 def count(self):
 return self._count

 def __str__(self):

 return "Counter :" + self._name + "->" + \

 str(self._count)

Discuss these questions with your group:

a) When you call the constructor Counter, what method is actually called by the Python
interpreter?

ANS: The class constructor for Counter, __init()__

b) How many arguments does Counter() need when you call it?

ANS: In this case, it has one, the name argument

c) What do we call the variables self._name and self._count?

ANS: attributes, or instance variables (or even fields)

d) The __init__() and __str__() methods have double underscores in the
definitions. What do we call methods with double underscores?

ANS: special methods

 2

e) Type in the Counter class (or download it from the class website) and write some test
code. Create two different Counter objects and assignment them to variables.
Increment the counter in each object a few times. Then print out each counter object.

ANS: Here is some sample code for a main that does the above:

def main():
 c = Counter("costco")
 art = Counter("museum")
 my_counter = Counter("yard sale")

 c.click()
 c.click()
 c.click()
 print(c.count()) # should print 3

 for i in range(20):
 art.click()
 print(art.count()) # should print 20

 my_counter.click()
 print(my_counter.count()) # should print 1

 print(art)

main()

2. The + key is broken on your keyboard. Implement Counter to use another means to keep track
of the count.

ANS: One possible solution is to use a list for self._count. Each time the method click()
is called, append to the list. Use the length of the list to determine the current count.

class Counter:
 def __init__(self, name):
 self._name = name
 self._count = []

 def click(self):
 self._count.append(1)

 def count(self):
 return len(self._count)

 3

3. Given the class definition for Point below:

import math
class Point:
 def __init__(self, x, y):
 self._x = x
 self._y = y

 def translate(self, dx, dy):

self._x += dx
self._y += dy

 def distance_from_origin(self):
 return math.sqrt(self._x**2 + self._y**2)

Write an __eq__() method for the Point class.

ANS:

 def __eq__(self, other):

 return self._x == other._x and self._y == other._y

4. Write a class named Fraction that represents a fraction by defining the following attributes
and methods:

Attributes:
• _num: an integer representing the numerator
• _dem: a non-zero integer representing the denominator (assume it is not zero)

Methods:
• __init__(self, n, d): where n is the numerator and d is the denominator
• __str__(self): returns a string of the form shown in Usage below
• get_numerator(self): returns the numerator attribute
• get_demoninator(self): returns the denominator attribute
• __eq__(self, other): returns True if two Fraction objects are equal and False

otherwise.
Usage:
>>> x = Fraction(1,2)
>>> str(x)
'1/2'
>>> y = Fraction(4,8)
>>> str(y)
'4/8'

 4

>>> x == y
True

Note: This solution to this problem is covered in detail in OCA-4.

ANS:

class Fraction:
 def __init__(self,n,d):
 self._num = n
 self._dem = d

 def get_numerator(self):
 return self._num

 def get_denominator(self):
 return self._dem

 def __eq__(self,other):
 return self._num/self._dem == \

other.get_numerator()/other.get_denominator()

 def __str__(self):
 return "{}/{}".format(str(self._num),str(self._dem))

