
 1

CSC 120 Lab 12

Mock Final Exam. Work alone for the first 30 minutes. (This will be graded for participation only.)
NOTE: These problems were written by the instructor.

1. (Linked Lists) Use the LinkedList and Node class definitions below to answer the

question. You may directly access the attributes or use typical names for setters/getters.
class Node:
 def __init__(self, value):
 self._value = value
 self._next = None

 def get_next(self):
 return self._next

class LinkedList:
 def __init__(self):
 self._head = None

 def add(self, new):
 new._next = self._head
 self._head = new

 def get_head(self):
 return self._head

Write a function compare(llistA, llistB) that takes linked lists llistA and llistB
as arguments and returns the following:

-1 if llistA is shorter than llistB
 1 if llistB is shorter than llistA
 0 if the lists are the same length

Your solution must not simply count the lengths of the lists and compare them, since the
complexity would be proportional to the sum of the lengths of the lists.

Instead, the complexity of your solution must be proportional to the length of the smaller list.
Use an iterative solution.

 2

2. (Trees) Consider the following definition of a BinaryTree class:

class BinaryTree:
 def __init__(self, value):
 self._value = value
 self._left = None
 self._right = None

Use this class to write the solution to the problem below. You may directly access the
attributes of the BinaryTree class when writing your function, or you may use typical
names for getters/setters of the attributes.

Write a function notate_interior(tree) that takes a binary tree tree and produces
an inorder traversal of the tree, with “I” following any interior node. The output should
print the value of each node, one per line. For example, for the following tree

the output would be

2
9 I
8
3 I
24
7 I

 3

3. (Recursion) Write a recursive function every_third(alist) that returns a list
consisting of the elements at every 3rd position of the Python list alist. The first element is
at position 0; “every 3rd position” means the elements at positions 0, 3, 6, 9,…. For
example, the call every_third([11,22,33,44,55,66,77,88]) should return the
list [11,44,77]. Assume there is at least one element in the list.

4. (Short answer.)

a) Some data types in Python are immutable. Describe in one sentence what that means and
give an example of an immutable data type.

b) What method is defined in a class so that two objects of that class can be compared with
the “==” operator?

c) How is a binary search tree different from a regular binary tree?

 4

5. (References) Write the code that would produce the data objects in the diagram below:

Put your code below:

6. (Complexity) Consider the function defined below:

def has_overlaps(list_a, list_b):
 for item in list_b:
 if item in list_a:
 return True
 return False

a) Explain why the code below is O(n2).

b) Give an example of two lists that demonstrate the worst-case complexity.

 5

7. (Complexity) Under what condition is searching for an item in a list O(log(n))?

8. (General programming) Write a function get_min(invent_dict) that takes a

dictionary of strings that map to integers and returns a list containing a tuple of the key/value
pair that has the minimum value. Assume that all values are 0 or greater. If there are ties,
the function returns all of the key/value pairs that have the same minimum.

For example, given the dictionary d below

d = {"spoons": 7, "knives" : 8, "forks": 6, "plates": 10, "cups": 6}

The call get_min(d)returns [("forks", 6), ("cups", 6)].

Restrictions: You may not use list comprehensions or the built-in functions min() or
sort(). Your function must have complexity O(n) and must only iterate through the
dictionary one time.

