
Lab 8 Problems

Problem 1 Write a recursive function first_matches_last(slist) that takes as an argument a
list of strings slist and returns a list consisting of those elements of slist whose first and last
characters are the same. For example,

first_matches_last(["abba", "nope", "kook", "hello", "bob"])

returns the list ['abba', 'kook', 'bob'].

Step 1: Write the function in your IDE or in the space below:

Problem 2 Write a function display(slist) that takes as an argument slist, a list of strings of
equal length, and prints the strings in slist, one per line, with a border on the top and bottom that is the
same size as the strings in slist. The border is a string of hyphen characters, '-'. For example, the call

display([" * ", " *** "," ***** ","*******"])

will print the following:

 *

The function display() should print the top border, then call a recursive helper function to print the
elements of the list one per line, and then print the bottom border. The display() function may use the
string concatenation operator *. If slist is empty, nothing is printed.

Step 1: Write the function and helper function in your IDE or in the space below:

Problem 3 Suppose we want to write a function to repeat the characters of a string my_str to create a
new string of a given length. For example, let's say we want to create strings of length 7. Here are some
examples of strings and their expansions to strings of length 7:

 "ab" -> "abababa"
 "cat" -> "catcatc"
 "boat" -> "boatboa"

We can do this using the string multiplication operator ‘*’, but we need to figure out two things first.

• What do we multiply the string by?
• What if the resulting string is too short?

Let’s consider the case of expanding "ab" to be of length 7. If we use integer division to determine the
multiplier, we get 7 // 2 = 3. Then "ab" * 3 is the string "ababab". At that point, we are one
character short.

How do we determine how many characters short the result string is, or will be, for any string and any
required size? Hint: use the modulus operator ‘%’.

Once we know how many characters “short” the result string is, we can use slicing to get those characters
from my_str and concatenate them on the end of the result string.

Step 1: Write a function expand(my_str, size) that takes a string my_str and returns a new
string of length size, repeating the characters in my_str as needed. You can assume that the length of
string my_str will always be less than or equal to size.

Problem 4 In this problem, you will be working with the BinaryTree class and the function
insert() that inserts a new value into a binary search tree.

Step 1: Draw the binary search tree that is created when the following sequence of values are added to a
binary search tree: 8, 10, 5, 20, 4, 9.

Step 2: Get the starter code lab8_starter.py from the class website (use the Labs link).

Step 3: Add the code to main() to create the tree above. Print the tree after each call to insert().

