
 1

CSC 120 Lab 9

Mock Midterm. Work alone for the first 30 minutes. (This will NOT be graded, but you will get attendance
points for the lab.) NOTE: These problems were written by the instructor.

1. Write a function is_palindrome(astr) that returns True if the string astr is a

palindrome and False otherwise. (A palindrome is a string that reads the same forward or
backward.) The string may have both upper and lowercase letters and spaces. Your function
should be case-insensitive and ignore spaces. Below are some example calls and returns:

print(is_palindrome("A man a plan a canal Panama")) # Output: True
print(is_palindrome("Radar")) # Output: True
print(is_palindrome("hello")) # Output: False

Requirement: Use a stack to implement the function (not recursion). Recall that the methods
of the Stack class are push(), pop(), and is_empty().

 2

2. Write a recursive function flatten_to_string(alist)that takes a nested list (a list
that may contain other lists) alist and returns a single string containing all the elements of
the list concatenated together. Below is an example use of the function:

nested_list = [1, ['a', 'b'], 2, ['c', [3, 4]], 'd']
result = flatten_to_string(nested_list)
print(result) # Output: "1ab2c34d"

 Note: To determine if an element is a list, use this comparison: type(alist[0]) == list

3. (Short answer.)
a) What does FIFO stand for?

b) What does LIFO stand for?

c) In a binary tree, each node is either a leaf node or a node that has two children.

 (True or False)

d) An Abstract Data Type (ADT) describes a set of data values and associated operations that

are allowed on the data. It also specifies how to implement the data type. (True or False)

 3

4. For the problem below, use the following implementations of Node and LinkedList.

class LinkedList:
 def __init__(self):

 self._head = None

 def add(self,new):
 new._next = self._head
 self._head = new

class Node:
 def __init__(self,value):

 self._value = value
 self._next = None

Note: You may access the attributes directly without getter and setter methods. You may
not change the implementation of LinkedList and Node.

Write a method remove_node(self, value) for the LinkedList class that
removes the node whose _value attribute equals value. The method modifies the
linked list and has no return value. Note: If value occurs in the linked list more than
once, only the first occurrence is removed.

 4

5. For the following problem, use the implementation of a BinaryTree class below:

class BinaryTree:
 def __init__(self, value):

self._value = value
self._left = None

 self._right = None

 Also, assume that value(), left(), and right() are the usual getters for the attributes.

Write a recursive function sum_odds(tree) that takes a binary tree tree and returns the
sum of the values in the tree that are odd.

6. Given the preorder and inorder traversals below, draw the resulting tree.

Preorder: 3, 6, 4, 5, 8, 9, 2
Inorder: 4, 6, 3, 5, 9, 8, 2

