
CSc 120
Introduction to Computer Programing II

01: Python review

getting started

2

Python language and
environment
• Language: Python 3
• Use Visual Studio Code for assignments
https://code.visualstudio.com/

• But you’ll see IDLE in these slides
• https://www.python.org/

• Very simple environment
• tutorial
• beginner's guide
• language reference
• setup and usage, HOWTOs, FAQs

3

https://code.visualstudio.com/
https://www.python.org/

Surprises if coming from C, C++,
Java
• No variable declarations
• Indentation instead of {}
• Flexible for loop
• Built-in data structures (lists, dictionaries, tuples, sets)
• Arbitrary-precision integers
• Garbage collection (also in Java)

ono explicit allocation/deallocation

4

python review:
variables, expressions,

assignment

5

python basics

6

>>> x = 4
>>> y = 5
>>> z = x + y
>>> x
4
>>> y
5
>>> z
9
>>> y = z * 2
>>> y
18
>>>

python basics

7

>>> : python interpreter's prompt
black: user input (keyboard)
blue: python interpreter output

>>> x = 4

>>> y = 5

>>> z = x + y

>>> x

4
>>> y

5
>>> z

9

>>> y = z * 2

>>> y

18

>>>

python basics

8

variables

>>> x = 4
>>> y = 5
>>> z = x + y
>>> x
4
>>> y
5
>>> z
9
>>> y = z * 2
>>> y
18
>>>

python basics

9

expressions

>>> x = 4
>>> y = 5
>>> z = x + y
>>> x
4
>>> y
5
>>> z
9
>>> y = z * 2
>>> y
18
>>>

python basics

10

assignment
statements

>>> x = 4
>>> y = 5
>>> z = x + y
>>> x
4
>>> y
5
>>> z
9
>>> y = z * 2
>>> y
18
>>>

python basics

11

typing in an expression causes
its value to be printed

>>> x = 4
>>> y = 5
>>> z = x + y
>>> x
4
>>> y
5
>>> z
9
>>> y = z * 2
>>> y
18
>>>

python basics

• variables:
• names begin with letter or '_'
• don't have to be declared in

advance
• type determined at runtime

• expressions:
• all the usual arithmetic operators

12

>>> x = 4
>>> y = 5
>>> z = x + y
>>> x
4
>>> y
5
>>> z
9
>>> y = z * 2
>>> y
18
>>>

Multiple (aka parallel) assignment

Assigns to multiple variables at
the same time

x1, x2, ..., xn = exp1, exp2, ..., expn

Behavior:
1. exp1, ..., expn evaluated (L-to-

R)
2. x1, ..., xn are assigned (L-to-R)

13

>>>
>>> x, y, z = 11, 22, 33
>>> x
11
>>> y
22
>>> z
33
>>>

Comparison and Booleans

Comparision operations:
<, >, ==, >=, <=, !=

Lower precedence than
arithmetic operations.

Yield boolean values:
True
False

14

>>> x, y, z = 11, 22, 33
>>> x
11
>>> y
22
>>> z
33
>>> x < y
True
>>> y == z
False

EXERCISE-Whiteboard
>>> x = 3
>>> y = 4
>>> z = (2*x – 1 == y+1)
>>> z

← what value is printed out for z?

15

EXERCISE-Whiteboard
>>> x = 3
>>> y = 4
>>> sum, diff, prod = x + y, x – y, x * y
>>> prod+diff

← what is the value printed out?

16

python review:
basics of strings

17

Basics of strings

18

>>> x = "abcd"
>>> y = 'efgh'
>>> z = "efgh"
>>>

a string is a sequence of characters
(letters, numbers, and other symbols)

Basics of strings

19

a string is a sequence of characters
(letters, numbers and other symbols)

a string literal is enclosed in quotes
• single-quotes (at both ends)
• double-quotes (at both ends)

>>> x = "abcd"
>>> y = 'efgh'
>>> z = "efgh"
>>>

Basics of strings

20

a string is a sequence of characters
• we can index into a string to get the

characters

>>> text = 'abcdefghi'

>>>

>>> text
'abcdefghi'

>>> text[0]
'a'

>>> text[1]

'b'
>>> text[27]

Traceback (most recent call last):
File "<pyshell#153>", line 1, in <module>

text[27]

IndexError: string index out of range
>>>

Basics of strings

21

a string is a sequence of characters
• we can index into a string to get the

characters

indexing beyond the end of the
string gives an IndexError error

>>> text = 'abcdefghi'
>>>
>>> text
'abcdefghi'
>>> text[0]
'a'
>>> text[1]
'b'
>>> text[27]
Traceback (most recent call last):
File "<pyshell#153>", line 1, in <module>
text[27]

IndexError: string index out of range
>>>

Basics of strings

22

a string is a sequence of characters
• we can index into a string to get the

characters
• each character is returned as a

string of length 1

Intuitively, a character is a single letter,
digit, punctuation mark, etc.

E.g.: 'a'
'5'
'$'

>>> text = 'abcdefghi'
>>>
>>> text
'abcdefghi'
>>> text[0]
'a'
>>> text[1]
'b'
>>> text[27]
Traceback (most recent call last):

File "<pyshell#153>", line 1, in <module>
text[27]

IndexError: string index out of range

Basics of strings

23

x[i] : if i ³ 0 (i.e., non-negative values):
• indexing is done from the beginning

of the string
• the first letter has index 0

x[i] : if i < 0 (i.e., negative values):
• indexing is done from the end of the

string
• the last letter has index -1

>>> x = '0123456789'
>>>
>>> x[0]
'0'
>>> x[1]
'1'
>>> x[2]
'2'
>>>
>>> x[-1]
'9'
>>> x[-2]
'8'
>>> x[-3]
'7'
>>>

Basics of strings

24

x[i] : if i ³ 0 (i.e., non-negative values):
• indexing is done from the beginning

of the string
• the first letter has index 0

x[i] : if i < 0 (i.e., negative values):
• indexing is done from the end of the

string
• the last letter has index -1

>>> x = '0123456789'
>>>
>>> x[0]
'0'
>>> x[1]
'1'
>>> x[2]
'2'
>>>
>>> x[-1]
'9'
>>> x[-2]
'8'
>>> x[-3]
'7'
>>>

EXERCISE-Whiteboard

>>> x = 'a'
>>> x == x[0]

25

what do you think will be printed here?

EXERCISE-Whiteboard

>>> x = 'apple'
>>> x[2] == x[-2]

26

what do you think will be printed here?

Basics of strings

27

len(x) : length of a string x

>>> x = 'abcDE_fgHIJ_01234'
>>> x
'abcDE_fgHIJ_01234'
>>>
>>>
>>> len(x)
17
>>> y = x.lower()
>>> y
'abcde_fghij_01234'
>>>
>>> y = x.upper()
>>y
'ABCDE_FGHIJ_01234'
>>>

Basics of strings

28

len(x) : length of a string x

x.lower(), x.upper() : case conversion on
the letters in a string x
• note that non-letter characters are

not affected

>>> x = 'abcDE_fgHIJ_01234'
>>> x
'abcDE_fgHIJ_01234'
>>>
>>>
>>> len(x)
17
>>> y = x.lower()
>>> y
'abcde_fghij_01234'
>>>
>>> y = x.upper()
>> y
'ABCDE_FGHIJ_01234'
>>>

Basics of strings

29

len(x) : length of a string x

x.lower(), x.upper() : case conversion on
the letters in a string x
• note that non-letter characters are

not affected
• does not modify x

>>> x = 'abcDE_fgHIJ_01234'
>>> x
'abcDE_fgHIJ_01234'
>>>
>>>
>>> len(x)
17
>>> y = x.lower()
>>> y
'abcde_fghij_01234'
>>>
>>> y = x.upper()
>> y
'ABCDE_FGHIJ_01234'
>>>

Python supports a wide variety of string
operations
• see www.tutorialspoint.com/python3/

python_strings.htm

Basics of strings

30

str.join(x)

str.join(x): produces a string in which
the characters of x have been joined by
the string str

does not modify x

>>> x = 'abc'
>>>
>>> x
'abc'
>>>
>>> ",".join(x)
'a,b,c'
>>>

Basics of strings

31

>>> x = 'abcdefgh'
>>>
>>> x
'abcdefgh'
>>> x[3]
'd'
>>>
>>> x[3] = 'z'
Traceback (most recent call last):
File "<pyshell#193>", line 1, in <module>
x[3] = 'z'

TypeError: 'str' object does not support item assignment
>>>

Basics of strings

32

strings are immutable, i.e., cannot be
modified or updated

>>> x = 'abcdefgh'
>>>
>>> x
'abcdefgh'
>>> x[3]
'd'
>>>
>>> x[3] = 'z'
Traceback (most recent call last):
File "<pyshell#193>", line 1, in <module>
x[3] = 'z'

TypeError: 'str' object does not support item assignment
>>>

EXERCISE-Whiteboard
>>> text = "How are you?"
>>>

33

Write code that operates on text and produces the string

'H-O-W- -A-R-E- -Y-O-U-?’

Basics of strings

34

+ applied to strings does concatenation

>>> x = "abcd"
>>> y = 'efgh'
>>> z = 'efgh'
>>> y == z
True
>>> x == y
False
>>>
>>> w = x + y
>>> w
'abcdefgh'
>>>
>>> u = x * 5
>>> u
'abcdabcdabcdabcdabcd'

Basics of strings

35

+ applied to strings does concatenation

'*' applied to strings:
• does repeated concatenation if one

argument is a number
• generates an error otherwise

>>> x = "abcd"
>>> y = 'efgh'
>>> z = 'efgh'
>>> y == z
True
>>> x == y
False
>>>
>>> w = x + y
>>> w
'abcdefgh'
>>>
>>> u = x * 5
>>> u
'abcdabcdabcdabcdabcd'

Basics of strings

36

+ applied to strings does concatenation

not all arithmetic operators carry over
to strings

* applied to strings:
• does repeated concatenation if one

argument is a number
• generates an error otherwise

>>> x = "abcd"
>>> y = 'efgh'
>>> z = 'efgh'
>>>
>>> w = x + y
>>> w
'abcdefgh'
>>>
>>> u = x * 5
>>> u
'abcdabcdabcdabcdabcd'
>>> x - y
Traceback (most recent call last):
File "<pyshell#39>", line 1, in <module>
x - y

TypeError: unsupported operand type(s) for -: 'str' and 'str'
>>>

Basics of strings

37

slicing: produces substrings

• characters from 3 (included) to 6 (excluded)
• characters from 2 (included) to 5 (excluded)

• characters from the beginning to 2 (excluded)
• characters from 4 (included) to the end

>>> x = "abcdefg"

>>> y = 'hijk'

>>>
>>> x[3:6]

'def'
>>> x[2:5]

'cde'

>>>
>>> x[:2]

'ab'
>>> x[4:]

'efg'

>>> x[4:] + y[:2]
'efghi'

EXERCISE-Whiteboard

>>> x = "whoa!"
>>> y = x[2] * len(x)
>>> z = x[3] + x[0] + y
>>> z

38

what is printed here?

awooooo

EXERCISE-Whiteboard

39

Write an expression that, for any string text, results in the last two
characters of text. Assume text has length of 2 or greater.

python review:
reading user input I:

input()

40

Reading user input I: input()

41

>>> x = input()

13579

>>> x
'13579'

>>> y = input('Type some input: ')
Type some input: 23

>>> y

'23'
>>> z = input('More input: ')

More input: 567
>>> z

'567'

>>>

Reading user input I: input()

42

input statement:
• reads input from the keyboard
• returns the value read

o (a string)

>>> x = input()
13579
>>> x
'13579'
>>> y = input('Type some input: ')
Type some input: 23
>>> y
'23'
>>> z = input('More input: ')
More input: 567
>>> z
'567'
>>>

Reading user input I: input()

43

input statement:
• reads input from the keyboard
• returns the value read as a string

• takes an optional argument
o if provided, serves as a prompt

>>> x = input()
13579
>>> x
'13579'
>>> y = input('Type some input: ')
Type some input: 23
>>> y
'23'
>>> z = input('More input: ')
More input: 567
>>> z
'567'
>>>

Reading user input I: input()

44

the value read in is represented
as a string

>>>
>>> x = input()
12
>>> x
'12'
>>> y = x / 2
Traceback (most recent call last):
File "<pyshell#59>", line 1, in <module>
y = x / 2

TypeError: unsupported operand type(s) for /: 'str' and 'int'
>>>

Reading user input I: input()

45

the value read in is represented
as a string
• string ≡ sequence of characters

>>>
>>> x = input()
12
>>> x
'12'
>>> y = x / 2
Traceback (most recent call last):
File "<pyshell#59>", line 1, in <module>
y = x / 2

TypeError: unsupported operand type(s) for /: 'str' and 'int'
>>>

• TypeError: indicate an
error due to wrong type

Reading user input I: input()

46

the value read in is represented
as a string
• string ≡ sequence of characters
• TypeError: indicates an error due to

a wrong type

>>>

>>> x = input()

12
>>> x

'12'
>>> y = x / 2

Traceback (most recent call last):

File "<pyshell#59>", line 1, in <module>
y = x / 2

TypeError: unsupported operand type(s) for /: 'str' and 'int'
>>> y = int (x) / 2

>>> y

6.0
>>>

• Fix: explicit type conversion

EXERCISE-Whiteboard

>>> x = input()
12
>>> y = 2*x

47

is this valid?

EXERCISE-Whiteboard

>>> x = input()
>>> y = x + x
>>> int(x) == int(y)
True

48

what input value(s) will cause
this to work as shown?

python review:
conditionals

49

Conditional statements: if/elif/else

50

>>> var1 = input()
100
>>> var2 = input()
200
>>> x1 = int(var1)
>>> x2 = int(var2)
>>>
>>> if x1 > x2:

print('x1 is bigger than x2')
elif x1 == x2:

print('x1 and x2 are equal')
else:

print('x1 is smaller than x2')
x1 is smaller than x2
>>>

Conditional statements: if/elif/else

• if-statement syntax:

if BooleanExpr :
stmt
…

elif BooleanExpr :
stmt
…

elif …
…

else:
stmt
…

51

elifs are optional
(use as needed)

>>> var1 = input()

100

>>> var2 = input()

200

>>> x1 = int(var1)

>>> x2 = int(var2)

>>>

>>> if x1 > x2:

print('x1 is bigger than x2')

elif x1 == x2:

print('x1 and x2 are equal')

else:

print('x1 is smaller than x2')

x1 is smaller than x2

>>>

Conditional statements: if/elif/else

• if-statement syntax:
if BooleanExpr :

stmt
…

elif BooleanExpr :
stmt
…

elif …
…

else:
stmt
…

52

elifs are optional
(use as needed)

else is optional

>>> var1 = input()
100
>>> var2 = input()
200
>>> x1 = int(var1)
>>> x2 = int(var2)
>>>
>>> if x1 > x2:

print('x1 is bigger than x2')
elif x1 == x2:

print('x1 and x2 are equal')
else:

print('x1 is smaller than x2')
x1 is smaller than x2
>>>

EXERCISE-Whiteboard

53

Prompt the user for input and assign the result to text.

Set s to the last two characters of text. If text has length less than 2,
s should be assigned to an empty string.

Solution

54

text = input()
if len(text) > 2:

s = text[-2:]
else:

s = ''

python review:
while loops

55

Loops I: while

56

>>> n = input('Enter a number: ')
Enter a number: 5
>>> limit = int(n)
>>> i = 0
>>> sum = 0
>>> while i <= limit:

sum += i
i += 1

>>> sum
15
>>>

Loops I: while

• while-statement syntax:
while BooleanExpr :

stmt1
…
stmtn

• stmt1 … stmtn are executed repeatedly as
long as BooleanExpr is True

57

>>> n = input('Enter a number: ')
Enter a number: 5
>>> limit = int(n)
>>> i = 0
>>> sum = 0
>>> while i <= limit:

sum += i
i += 1

>>> sum
15
>>>

EXERCISE-Whiteboard
>>> text = "To be or not to be, that is the question."
>>> c = "o"

58

Write the code to count
the number of times c
occurs in text.

Solution

59

count the occurrences of c in text
text = "To be or not to be, that is the question.”
c = "o"

n, i = 0, 0
while i < len(text):

if text[i] == c:
n += 1

i += 1

python review:
lists

60

Lists

61

>>> x = ['item1', 'item2', 'item3', 'item4']
>>>
>>> x[0]
'item1'
>>> x[2]
'item3'
>>> len(x)
4
>>> x[2] = 'newitem3'
>>> x
['item1', 'item2', 'newitem3', 'item4']
>>> x[1:]
['item2', 'newitem3', 'item4']
>>> x[:3]
['item1', 'item2', 'newitem3']

Lists

62

a list is a sequence of values

>>> x = ['item1', 'item2', 'item3', 'item4']
>>>
>>> x[0]
'item1'
>>> x[2]
'item3'
>>> len(x)
4
>>> x[2] = 'newitem3'
>>> x
['item1', 'item2', 'newitem3', 'item4']
>>> x[1:]
['item2', 'newitem3', 'item4']
>>> x[:3]
['item1', 'item2', 'newitem3']

Lists

63

a list is a sequence of values

accessing list elements (i.e., indexing),
computing length: similar to strings

• non-negative index values (³ 0) index
from the front of the list
o the first element has index 0

• negative index values index from the
end of the list
o the last element has index -1

>>> x = ['item1', 'item2', 'item3', 'item4']

>>>

>>> x[0]
'item1'

>>> x[2]
'item3'

>>> len(x)

4
>>> x[2] = 'newitem3'

>>> x
['item1', 'item2', 'newitem3', 'item4']

>>> x[1:]

['item2', 'newitem3', 'item4']
>>> x[:3]

['item1', 'item2', 'newitem3']

Lists

64

a list is a sequence of values

accessing list elements (i.e., indexing),
computing length: similar to strings

lists are mutable, i.e., can be modified
or updated
• different from strings

>>> x = ['item1', 'item2', 'item3', 'item4']
>>>
>>> x[0]
'item1'
>>> x[2]
'item3'
>>> len(x)
4
>>> x[2] = 'newitem3'
>>> x
['item1', 'item2', 'newitem3', 'item4']
>>> x[1:]
['item2', 'newitem3', 'item4']
>>> x[:3]
['item1', 'item2', 'newitem3']

Lists

65

a list is a sequence of values

accessing list elements (i.e., indexing),
computing length: similar to strings

lists are mutable, i.e., can be modified
or updated
• different from strings

slicing : similar to strings

>>> x = ['item1', 'item2', 'item3', 'item4']
>>>
>>> x[0]
'item1'
>>> x[2]
'item3'
>>> len(x)
4
>>> x[2] = 'newitem3'
>>> x
['item1', 'item2', 'newitem3', 'item4']
>>> x[1:]
['item2', 'newitem3', 'item4']
>>> x[:3]
['item1', 'item2', 'newitem3']

Lists

66

concatenation (+) : similar to strings

multiplication (*) similar to strings

>>> x = [11, 22, 33]
>>> y = [44, 55, 66, 77]
>>>
>>> x + y
[11, 22, 33, 44, 55, 66, 77]
>>>
>>>
>>> x * 3
[11, 22, 33, 11, 22, 33, 11, 22, 33]
>>>

EXERCISE-Whiteboard

>>> x = [“abc”, “def”, “ghi”, “jkl”]
>>> x[1] + x[-1]

67

what do you think will be printed here?

Lists

68

list.append(value)

appends the value to the list.

>>>nums = [18, 3, 24, 63, 18, 4]
>>>num.append(7)
>>>nums
[18, 3, 24, 63, 18, 4, 7]

Lists

69

Empty list

Use append to add additional elements.

>>>w = []

>>>w.append(' hello')
>>>w

[' hello']
>>>w.append(' there']
>>>w.append(2)
>>>w

[' hello' , ' there' , 2]

Lists

70

Empty list

Use append to add additional elements.

Elements can be of any type

>>>w = []

>>>w.append(' hello')
>>>w

[' hello']
>>>w.append(' there']
>>>w.append(2)
>>>w

[' hello' , ' there' , 2]

EXERCISE-Whiteboard

>>> num = [18, 3, 24, 63, 18, 4, 7]

71

Write the code to create a list of the even numbers of
num. Use a while loop and append.

Solution

72

create a list of the even elements of num
nums = [18, 3, 24, 63, 18, 4, 7]
i = 0
evens = []
while i < len(nums):

if nums[i] % 2 == 0:
evens.append(nums[i])

i += 1

Lists: sorting

73

sort() : sorts a list

>>> x = [1, 4, 3, 2, 5]
>>> x
[1, 4, 3, 2, 5]
>>> x.sort()
>>>
>>> x
[1, 2, 3, 4, 5]
>>>
>>> y = [1, 4, 3, 2, 5]
>>> y
[1, 4, 3, 2, 5]
>>> sorted(y)
[1, 2, 3, 4, 5]
>>> y
[1, 4, 3, 2, 5]
>>>

sorted() : creates a sorted copy of a list;
the original list is not changed

python review:
functions

74

Functions

• def fn_name (arg1 , …, argn):
• defines a function fn_name with

n arguments arg1 , …, argn

• return expr
• optional
• returns the value of the

expression expr to the caller

• fn_name(expr1, …, exprn):
• calls fn_name with arguments

expr1, …, exprn

75

Functions

76

• def fn_name (arg1 , …, argn):
• defines a function fn_name with

n arguments arg1 , …, argn

• return expr
• optional
• returns the value of the

expression expr to the caller

>>> def double(x):

return x + x

>>> double(7)
14

Functions

77

• def fn_name (arg1 , …, argn):
• defines a function fn_name with

n arguments arg1 , …, argn

• return expr
• optional
• returns the value of the

expression expr to the caller

>>> def double(x):

return x + x

>>> double(7)
14

>>>
>>> def num_occurences(text, c):

n, i = 0, 0

while i < len(text):
if text[i] == c:

n += 1
i += 1

return n

>>> num_occurences("To be or not to be, that is the question.", "o")
5

Lists of Lists

78

a list can consist of elements of
many types, including lists

a list of lists is called a 2-d list

>>> x = [[1,2,3], [4], [5, 6]]
>>> x
[[1, 2, 3], [4], [5, 6]]
>>>
>>>
>>> y = [['aa', 'bb', 'cc'], ['dd', 'ee', 'ff'], ['hh', 'ii', 'jj']]
>>> y
[['aa', 'bb', 'cc'], ['dd', 'ee', 'ff'], ['hh', 'ii', 'jj']]
>>>

Lists of Lists

79

a list can consist of elements of
many types, including lists

a list of lists is called a 2-d list

if the number of rows and
columns are equal, it is a grid

>>> x = [[1,2,3], [4], [5, 6]]
>>> x
[[1, 2, 3], [4], [5, 6]]
>>>
>>>
>>> >>> y = [['aa', 'bb', 'cc'], ['dd', 'ee', 'ff'], ['hh', 'ii', 'jj']]
>>> >>> y
[['aa', 'bb', 'cc'], ['dd', 'ee', 'ff'], ['hh', 'ii', 'jj']]
>>>

Lists of Lists

80

a list can consist of elements of
many types, including lists

a list of lists is called a 2-d list

if the number of rows and
columns are equal, it is a grid

*must check the length of
each row

>>> y
[['aa', 'bb', 'cc'], ['dd', 'ee', 'ff'], ['hh', 'ii', 'jj']]
>>>
>>> y[0]
['aa', 'bb', 'cc']
>>> y[1]
['dd', 'ee', 'ff']
>>> y[2]
['hh', 'ii', 'jj']
>>>
>>> len(y)
3
>>> len(y[0])
3
>>>

EXERCISE-Whiteboard
>>> y
[['aa', 'bb', 'cc'], ['dd', 'ee', 'ff'], ['hh', 'ii', 'jj']]
>>>
>>> y[0]
['aa', 'bb', 'cc']
>>> y[1]
['dd', 'ee', 'ff']
>>> y[2]
['hh', 'ii', 'jj']
>>>

81

how do we access 'bb'?

EXERCISE-Whiteboard
>>> x = [[1,2,3], [10,20,30], [100,200, 300]]
>>> x
[[1, 2, 3], [10,20,30], [100,200,300]]
>>>
>>>

82

write the code to sum the
first column of x
Use a while loop!

Helpful hint: first write x
out as a grid.
Label the rows

Solution

83

x = [[1,2,3], [10,20,30], [100,200, 300]]

sum the first column of a 2-d list x
sum, i = 0, 0
while i < len(x):

sum = sum + x[i][0]
i += 1

python review:
for loops

84

Loops II: for
• The for statement iterates over the items of any

sequence (or iterable object) in order
• for-statement syntax (the general form)

for Var in Expr :
stmt1
…
stmtn

• Expr is evaluated. stmt1 … stmtn are executed for
each element of the sequence that Expr produces;
the value each successive element is assigned to Var
in turn.

85

Loops II: for

86

>>> nums = [18, 3, 24, 63, 18, 4, 7]
>>> evens = []
>>>
>>> for n in nums:

if n % 2 == 0:
evens.append(n)

>>> evens
[18, 24, 18, 4]
>>>

sequence: a list or string
(there are more, as you will see)

range

87

• range(...) creates an object that represents a
sequence of numbers

• A range can be created in three ways:
range(stop)

0, 1, ..., stop-1
range(start, stop)

start, start+1, start+2, ..., stop-1
range(start, stop, step)

start, start+step, start+step*2, ..., stop – 1
• Note that stop is always exclusive

for with range

88

>>> nums = [18, 3, 24, 63, 18, 4, 7]
>>> evens = []
>>>
>>> for i in range(len(nums)):

if nums[i] % 2 == 0:
evens.append(nums[i])

>>> evens
[18, 24, 18, 4]
>>>

represents the
sequence 0,1,2,3,4,5,6

EXERCISE-Whiteboard
>>> grid = [[18, 25, 36], [23, 25, 18], [20, 54, 7]]
>>> grid
[[18, 25, 36], [23, 25, 18], [20, 54, 7]]
>>>
>>> total = 0
>>> for i in range(len(grid)):

total += grid[i][0]

>>> total
61
>>>

89

write the code to sum
the first column of grid
using for and range

EXERCISE-Whiteboard
>>> grid = [[18, 25, 36], [23, 25, 18], [20, 54, 7]]
>>> grid
[[18, 25, 36], [23, 25, 18], [20, 54, 7]]
>>>
>>> total = 0
>>>for row in grid:

total += row[0]

>>>total
61

90

write the code to sum
the first column of grid
using for (no range)

python review:
lists ↔ strings

91

>>> names = "John, Paul, Megan, Bill, Mary"
>>> names
'John, Paul, Megan, Bill, Mary'
>>>
>>> names.split()
['John,', 'Paul,', 'Megan,', 'Bill,', 'Mary']
>>>
>>> names.split('n')
['Joh', ', Paul, Mega', ', Bill, Mary']
>>>
>>> names.split(',')
['John', ' Paul', ' Megan', ' Bill', ' Mary']
>>>

Strings → lists

92

split() : splits a string on whitespace
returns a list of strings

split(delim) :
delim, splits the string on delim

Lists → strings

93

delim.join(list) : joins the strings in list
using the string delim as the
delimiter

returns a string

>>> x = ['one', 'two', 'three', 'four']
>>>
>>> "-".join(x)
'one-two-three-four'
>>>
>>> "!.!".join(x)
'one!.!two!.!three!.!four'
>>>

>>> x = ' abcd '
>>>
>>> x.strip()
'abcd'
>>>
>>> y = "Hey!!!"
>>>
>>> y.strip("!")
'Hey'
>>> >>> z = "*%^^stuff stuff stuff^%%%**"
>>>
>>> z.strip("*^%")
'stuff stuff stuff'

String trimming

94

x.strip() : removes whitespace from
both ends of the string x

returns a string

x.strip(string) : given an optional
argument string, removes
any character in string from
both ends of x

String trimming
Speculate: What do the lstrip() and rstrip() methods do?
>>> line = '...testing \n'
>>> line.rstrip()
'...testing'
>>> line.rstrip().lstrip(".")
'testing'

96

EXERCISE-Whiteboard
>>> text = "Bear Down, Arizona. Bear Down, Red and Blue."
>>> words = text.split()
>>> words
['Bear', 'Down,', 'Arizona.', 'Bear', 'Down,', 'Red', 'and', 'Blue.']
>>> words_lst = []
>>> for w in words:

words_lst.append(w.strip(".,"))

>>> words_lst
['Bear', 'Down', 'Arizona', 'Bear', 'Down', 'Red', 'and', 'Blue']
>>>

97

create a list of words with
no punctuation

98

EXERCISE-ICA-2 p.1-3

• Go to the class website
• Do problems 1-3 in ICA-2

python review:
reading user input II: file

I/O

99

Reading user input II: file I/O

100

suppose we want to read
(and process) a file
"this_file.txt"

Reading user input II: file I/O

• fileobj = open(filename)
• filename: a string
• fileobj: a file object

101

>>> infile = open("this_file.txt")
>>>
>>> for line in infile:

print(line)

line 1 line 1 line 1

line 2 line 2

line 3 line 3 line 3

>>>

Reading user input II: file I/O

• fileobj = open(filename)
• filename: a string
• fileobj: a file object

• for var in fileobj:
• reads the file a line at a

time
• assigns the line (a string)

to var

102

>>> infile = open("this_file.txt")
>>>
>>> for line in infile:

print(line)

line 1 line 1 line 1

line 2 line 2

line 3 line 3 line 3

>>>

Reading user input II: file I/O

• fileobj = open(filename)
• filename: a string
• fileobj: a file object

• for var in fileobj:
• reads the file a line at a

time
• assigns the line (a string)

to var

Note that each line read
ends in a newline ('\n')
character

103

>>> infile = open("this_file.txt")
>>>
>>> for line in infile:

print(line)

line 1 line 1 line 1

line 2 line 2

line 3 line 3 line 3

>>> print(repr(line))
'line 3 line 3 line 3\n'

Reading user input II: file I/O

At this point we've reached the end
of the file and there is nothing left
to read

104

>>> infile = open("this_file.txt")
>>>
>>> for line in infile:

print(line)

line 1 line 1 line 1

line 2 line 2

line 3 line 3

>>>

Reading user input II: file I/O

105

>>> infile = open("this_file.txt")

>>>

>>> for line in infile:
print(line)

line 1 line 1 line 1

line 2 line 2

line 3 line 3

>>>

>>> infile.close()
>>>

at this point we've reached the end of
the file so there's nothing left to read

housekeeping: close the file when we're
done with it

Reading user input II: file I/O

106

>>> infile = open("this_file.txt")
>>>
>>> for line in infile:

print(line.strip())

line 1 line 1 line 1
line 2 line 2
line 3 line 3

>>>

NOTE: we use strip() to get rid of
the newline character at the end
of each line

Writing output to a file

107

open(filename, "w"): opens filename
in write mode, i.e., for output.

If the file doesn't exist, is it created.

If it does exist, it is truncated.

>>> out_file = open("names.txt", "w")
>>>
>>> name = input("Enter a name: ")
Enter a name: Tom
>>>
>>> out_file.write(name + '\n')
4
>>> name = input("Enter a name: ")
Enter a name: Megan
>>> out_file.write(name + '\n')
6
>>> out_file.close()
>>>

Writing output to a file

108

open(filename, "w"): opens filename
in write mode, i.e., for output

>>> out_file = open("names.txt", "w")
>>>
>>> name = input("Enter a name: ")
Enter a name: Tom
>>>
>>> out_file.write(name + '\n')
4
>>> name = input("Enter a name: ")
Enter a name: Megan
>>> out_file.write(name + '\n')
6
>>> out_file.close()
>>>

fileobj.write(string): writes string
to fileobj

Writing output to a file

109

open the file in read mode
("r") to see what was written

>>> in_file = open("names.txt", "r")
>>> for line in in_file:

print(line)
>>> in_file.close()
Tom

Megan

python review:
a whole program!

110

Problem
Write a program that prints the number of times one or more
specified characters appears in a file.

Interaction:
File? this_file.txt

Chars? 123 io

'1': 3

'2': 2

'3': 3

' ': 13

'i': 8

'o': 0
111

line 1 line 1 line 1
line 2 line 2
line 3 line 3 line 3

this_file.txt

Problem decomposition
We'll have three functions:

get_lines(fname)
Read the file named fname and return its lines as
a list.

count_char(c, lines)
Returns the number of times c (a one-character
string) appears in lines, a list of strings.

main()
Top-level glue

112

113

def count_char(c, lines):
count = 0
for line in lines:

for this_char in line:
if c == this_char:

count += 1

return count

def get_lines(fname):
lines = []
f = open(fname)
for line in f:

lines.append(line)

f.close()
return lines

count_chars.py
def main():

fname = input("File? ")
chars = input("Chars? ")

lines = get_lines(fname)

for c in chars:
count = count_char(c, lines)
print("'" + c + "': " + str(count))

main()

count_chars.py, continued

High-level structure of count_chars.py:
def count_char(c, lines):

...

def get_lines(fname):
...

def main():
...

main()

114

Notes:
• All code except "main()" is in a function.
• "main()" must be last.
• Function definitions can be in any order.
• What happens if you forget to call main?

115

EXERCISE-ICA-3 p.1-2

• Go to the class website
• Do problems 1-2 in ICA-3

python review:
data representation

117

ASCII codes
• ASCII is "American Standard Code

for Information Interchange"
• The ASCII standard specifies

numeric codes for 128 characters.
• ASCII was developed in the 1960s
• In 1988 development began on

Unicode.
• Version 14 of Unicode can

accommodate
144,697 characters.
• The first 128 characters of ASCII

and Unicode are the same.

118

ASCII continued
• Python provides ord() and chr() for

working with ASCII codes.
>>> ord('a')
97
>>> chr(98)
'b'
>>> print(chr(49),chr(50),chr(51))
1 2 3
>>> ord('\n')
10

119

Data representation
• Conceptually, computers store all data as numbers.
• The type of a data value determines the meaning of

the number(s) that represent it.
>>> x = 3
>>> type(x)
<class 'int'>
>>> y = "3"
>>> type(y)
<class 'str'>
>>> z = "x+y"

120

3 (int)
x

51 (str)
y

120 (str)
z

43 121

Data representation

Type is considered when values are compared.
>>> a = "5"
>>> b = 5
>>> a == b
False
>>> [120,43,121] == "x+y"
False
>>> chr(120) + chr(43) + chr(121) == "x+y"
True

121

python review:
random numbers

122

The random module
• Python's random module contains methods for

working with random numbers.

• To use it, put import random at the top of your
code, below any header comments.

• The randint method generates a random
number between two integers, inclusive.

>>> random.randint(0,6)
2

123

Testing trouble!
This program prints three random numbers:

import random
def main():

for i in range(3):
print(random.randint(1,100))

main()

What if the program did something
complicated, like generating random
poetry?

I'd want to be able to get the same
sequence of random numbers again and
again, so I could get the same poem
again and again when testing.

124

Two runs in IDLE:
=== RESTART: rand3.py ===
31
49
26
>>>
=== RESTART: rand3.py ===
64
64
1
>>>

Testing trouble!
We can "seed" Python's random number generator to make it
generate the same sequence every time.

import random
def main():

random.seed("7")
for i in range(3):

print(random.randint(1,100))

main()

125

Two runs in IDLE:
=== RESTART: rand3.py ===
92
73
70
>>>
=== RESTART: rand3.py ===
92
73
70
>>>

python review:
dictionaries

126

Dictionaries

• A dictionary is like a list, but it can be indexed using
strings (or ints, or tuples, or any immutable type)
• the values used as indexes for a particular dictionary are

called its keys
• think of a dictionary as an unordered collection of
key : value pairs
• empty dictionary: {}

• It is an error to index into a dictionary using a non-
existent key

127

Dictionaries
A Python dictionary is like a Python list that can be indexed
with values of (almost) any type, not just integers.

Let's make an empty dictionary and experiment with it:
>>> d = {}
>>> d
{}
>>> len(d)
0
>>> type(d)
<class 'dict'>

128

Dictionaries
Dictionaries hold pairs of keys and values.

Let's make a dictionary d add two key/value pairs to it:
>>> d = {}
>>> d["seven"] = 7
>>> d["zero"] = 0
>>> d
{'zero': 0, 'seven': 7}
>>> len(d)
2

129

Dictionaries
At hand:

>>> d
{'zero': 0, 'seven': 7}

Indexing with a key produces its associated value:
>>> d["seven"]
7

What is produced if a key doesn't exist?
>>> d["zeroe"]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'zeroe'

130

Dictionaries
The in operator can be used to see if a key is in a dictionary:

>>> d
{'zero': 0, 'seven': 7}
>>> k = 'zero'
>>> k in d
True
>>> 'x' in d
False
>>> 0 in d
False

131

Dictionaries
It's repetitious to use a series of assignments to populate a
dictionary with literal key/value pairs:

>>> classrooms= {}
>>> classrooms["CSC 110"] = "ENR2 N120"
>>> classrooms["CSC 120"] = "ILC 120"
>>> classrooms["CSC 372"] = "ILC 119"

Alternative:
>>> classrooms = { "CSC 110":"ENR2 N120","CSC 120": "ILC 120",
"CSC 372": "ILC 119"}

>>> len(classrooms)
3
>>> classrooms
{'CSC 110': 'ENR2 N120', 'CSC 120': 'ILC 120', 'CSC 372': 'ILC 119'}

132

The following code is legal:
>>>nums = [2,4,6]
>>> d = {}
>>>d[2] = ‘hello’
>>>d[‘there’] = 14
>>>d[‘there’]
14
>>>d[nums] = 3

True or False? 134

EXERCISE (Review)

Dictionaries have keys() and values() methods that both
produce iterable objects.

>>> romans = {"I": 1, "V": 5, "X": 10, "L": 50}

>>> romans.keys()
dict_keys(['X', 'I', 'V', 'L'])

>>> romans.values()
dict_values([10, 1, 5, 50])

Q: What can we do with an iterable object?
A: Iterate over the values it produces!

135

keys() and values()

Dictionaries have keys() and values() methods that both
produce iterable objects.

With romans defined as below, we will print the values:
>>> romans = {"I": 1, "V": 5, "X": 10, "L": 50}

>>> for value in romans.values():
print(value)

1
5
10
50

136

keys() and values()

Problem: Write a function print_keys(d) that prints the keys in
the dictionary d, one per line.

>>> print_keys(classrooms)
CSC 120
CSC 110
CSC 372
>>> print_keys(romans)
X
L
V
I

Work with your neighbor(s) and write print_keys(d). (2')

137

ICA-4 prob. 1

Solution:
"""Print the keys in dictionary d, one per line"""

def print_keys(d):
for k in d.keys():
print(k)

for testing
classrooms = { "CSC 110":"ENR2 N120","CSC 120": "ILC 12
0", "CSC 372": "ILC 119"}

romans = {"I": 1, "V": 5, "X": 10, "L": 50}

138

keys() and values()
Dictionaries themselves are iterable objects. Observe:

>>> romans
{'I': 1, 'V': 5, 'L': 50, 'X': 10}
>>> for x in romans:

print(x)
I
V
L
X

When we iterate over a dictionary what are we doing?
We're iterating over the dictionary's keys.

141

keys() and values()
Dictionaries themselves are iterable objects. Observe:

>>> romans
{'I': 1, 'V': 5, 'L': 50, 'X': 10}
>>> for x in romans:

print(x)
I
V
L
X

What if we wanted to print the keys and the values?
Given a key, how do we access corresponding value?

142

keys() and values()
Dictionaries themselves are iterable objects. Observe:

>>> romans
{'I': 1, 'V': 5, 'L': 50, 'X': 10}
>>> for x in romans:

print(x, romans[x]) #use the key to get the value
I 1
V 5
X 10
L 50

143

144

EXERCISE-ICA-4 p.2-3

• Do problems 2 and 3.

Problem
Write a function count_chars(s) that returns a dictionary
where each key/value pair represents the occurrence count
for each unique character found in the string s.

Usage:
>>> count_chars("aaa")
{'a': 3}

>>> count_chars("aabaa")
{'a': 4, 'b': 1}

>>> count_chars("to be or not to be")
{'n': 1, 't': 3, 'r': 1, ' ': 5, 'o': 4, 'e': 2, 'b': 2}

145

Pseudocode
Write a function count_chars(s) that takes a string s and returns a
dictionary of the counts of all characters in the string.

Pseudocode: (a mix of English and code)
def count_chars(s):

make an empty dictionary counts
(Each key/value pair represent a character and its count)

for each character c in s
if the key c is present in the dictionary

increment the associated value
else
counts[c] = 1

return counts

146

Prototyping at the shell prompt

>>> counts = {}
>>> s = "abacbacc"
>>> c = s[0]
>>> c in counts
False
>>> counts[c] = 1
>>> counts
{'a': 1}
>>> c = s[1]
>>> c in counts
False

>>> counts[c] = 1
>>> counts
{'a': 1, 'b': 1}
>>> c = s[2]
>>> c in counts
True
>>> counts[c] = counts[c] + 1
>>> counts
{'a': 2, 'b': 1}

147

A good practice: Work out key computations using the Python shell,
especially when you're learning a new feature.

Solution
def count_chars(s):
"""return a dictionary with key/value pairs with
occurrence counts for the characters in s"""

counts = {}

for c in s:
if not c in counts: # First occurrence of c

counts[c] = 1
else: # We've seen c at least once

counts[c] = counts[c] + 1

return counts

149

150

EXERCISE-ICA-4 p.4

• Do problem 4.

Dictionary values can be anything!
Dictionaries can hold values of any type.

>>> pairs = {}
>>> pairs["s"] = "a string"
>>> pairs["i"] = 7
>>> pairs["f"] = 3.4
>>> pairs["L"] = [1,2,3]
>>> pairs["n"] = None
>>> pairs["d"] = {"AZ": "Phoenix", "NC": "Raleigh"}

>>> pairs{'f': 3.4, 's': 'a string', 'i': 7, 'n': None, 'd': {'AZ':
'Phoenix', 'NC': 'Raleigh'}, 'L': [1, 2, 3]}

151

Dictionary values can be anything!
At hand:

>>> pairs = {}
>>> pairs["d"] = {"AZ": "Phoenix", "NC": "Raleigh"}

Let's work with pairs:
>>> pairs["d"]
{'AZ': 'Phoenix', 'NC': 'Raleigh'}
>>> pairs["d"]["AZ"]
'Phoenix'
>>> pairs["d"]["NC"]
'Raleigh'
>>> pairs["d"]["NC"][-1]
'h'

152

Let's make some dictionaries:
>>> mis_units = { 'mis 101': 4, 'mis 102': 3, 'mis 202': 2 }
>>> csc_units = { 'csc 110': 4, 'csc 120': 4, 'csc 352': 3 }
>>> ece_units = { 'ece 111': 3, 'ece 222': 3, 'ece 333': 4 }

Let's make a dictionary of dictionaries!
>>> catalog =

{ "MIS" : mis_units, "CSC" : csc_units, "ECE" : ece_units
}

Some people would say that catalog is a "2d-dictionary” .

Others say "two-level dictionary". (First level is departments;
second level is courses.)

A dictionary of dictionaries

153

A dictionary of dictionaries

154

>>> catalog
{'MIS': {'mis 101': 4, 'mis 102': 3, 'mis 202': 2}, 'CSC':
{'csc 110': 4, 'csc 120': 4, 'csc 352': 3}, 'ECE': {'ece
111': 3, 'ece 222': 3, 'ece 333': 4}}

>>> for dept in catalog:
print(dept, ":", catalog[dept])

MIS : {'mis 101': 4, 'mis 102': 3, 'mis 202': 2}
CSC : {'csc 110': 4, 'csc 120': 4, 'csc 352': 3}
ECE : {'ece 111': 3, 'ece 222': 3, 'ece 333': 4}
>>>

Problem (ICA-5 prob. 1)

155

Do ICA-5 problem 1.

Problem

Usage:
>>> find_courses(catalog, 4)
['csc 110', 'csc 120', 'ece 333', 'mis 101']
>>> for units in range(2,5):

print(units, "unit courses:", find_courses(catalog,units))
2 unit courses: ['mis 202']
3 unit courses: ['csc 352', 'ece 111', 'ece 222', 'mis 102']
4 unit courses: ['csc 110', 'csc 120', 'ece 333', 'mis 101']

A "sketch" of a valid catalog:
{'MIS': {'mis 102': 3, ...}, 'CSC': {'csc 110': 4, ...}, 'ECE': {...}}

156

Write a function find_courses(catalog, units) that takes a two-
level dictionary 'catalog' and an int 'units' and returns a sorted
list of courses having that number of units.

Pseudocode

157

Spec: find_courses(catalog, units) returns a list of courses in
'catalog' having 'units' units.

A "sketch" of a valid catalog:
{'MIS': {'mis 102': 3, ...}, 'CSC': {'csc 110': 4, ...}, 'ECE': {...}}

Pseudocode:
def find_courses(catalog, units):

courses = []
for each department

for each course in department
if course's units == units:

add it to courses
return sorted courses

Whiteboard: write
find_courses!

Solution

158

def find_courses(catalog, units):
courses = []
for dept in catalog:

for key in catalog[dept]:
if catalog[dept][key] == units:

courses.append(key)
return sorted(courses)

What questions do you have?
Can it be improved?

Repetitious!

def find_courses2(catalog, units): # NOTES/find_courses2.py
courses = []
for dept in catalog:

dept_cat = catalog[dept]
for course in dept_cat:

if dept_cat[course] == units:
courses.append(course)

return sorted(courses)

What did we change?

Improved

159

Introduced an intermediate
variable.
• Definitely cleaner
• Maybe faster

Problem (ICA-5 prob. 2)

160

Add a 3 unit course called 'csc 245' to catalog.
>>> catalog
{'MIS': {'mis 101': 4, 'mis 102': 3, 'mis 202': 2},
'CSC': {'csc 110': 4, 'csc 120': 4, 'csc 352': 3},
'ECE': {'ece 111': 3, 'ece 222': 3, 'ece 333': 4}}

Solution
>>> catalog[‘CSC’][‘csc 245’] = 3

Problem (ICA-5 prob. 3)

161

>>> catalog
{'MIS': {'mis 101': 4, 'mis 102': 3, 'mis 202': 2}, 'CSC':
{'csc 110': 4, 'csc 120': 4, 'csc 352': 3}, 'ECE': {'ece
111': 3, 'ece 222': 3, 'ece 333': 4}}

To add a 3-course unit to the 'CSC' inner dictionary:
>>> catalog['CSC']['csc 245'] = 3
How to add a course for a new department 'ENGL’?
Solution:
>>> catalog['ENGL'] = {'engl 101': 3}

Problem (ICA-5 prob. 4)

162

Count the keys in a 2-d dictionary.

Experiment

163

What's the output?
def main():

d = {}
for c in "TIP":

d[c] = c

for k in d.keys():
print(k, end=" ")

print()

main()

IMPORTANT: The insertion order of keys is not guaranteed to be
the iteration order in all versions of Python!

Output with Python 3.5.2:
$ python3.5 dict_order.py
P T I
$ python3.5 dict_order.py
I T P
$ python3.5 dict_order.py
T P I

Output with Python 3.6.2:
$ python3.6 dict_order.py
T I P
$ python3.6 dict_order.py
T I P
$ python3.6 dict_order.py
T I P

Dictionary Summary

164

Operation Result

{k1:v1, k2: v3, ...} Dictionary literal. {} is empty dictionary.

len(d) Return the number of items in the dictionary d.

d[key] Return the item of d with key key. Raises an error if key is
not in the dictionary.

d[key] = value Set d[key]to value.

del d[key] Remove d[key] from d. Raises an error if key is not in
the dictionary. (not discussed)

key in d Return True in d has a key key, else False.

key not in d Equivalent to not key in d.

keys() Returns an iterable object that will produce all keys

values() Returns an iterable object that will produce all value

items() Returns an iterable object that will produce 2-tuples with
key/value pairs. (Tuples coming RSN!)

Need tuples before discussing items().

python review:
tuples

165

Tuples ("toople", not "tupple")

166

A Python tuple is like a Python list that is immutable―a tuple
can't be changed.

Let's make a tuple:
>>> location = (17.2, 35.9, "Z3")
>>> location
(17.2, 35.9, 'Z3')

>>> type(location)
<class 'tuple'>

An item can be fetched with indexing:
>>> location[0]
17.2

Tuples

167

An item cannot be assigned to: (tuples are immutable!)
>>> location[1] = 23.7
...
TypeError: 'tuple' object does not support item assignment

Items cannot be added to or removed from a tuple:
>>> location.append(7)
...
AttributeError: 'tuple' object has no attribute 'append'
>>> location.pop(1)
...
AttributeError: 'tuple' object has no attribute 'pop'

Tuples

168

What does the following assignment do?
>>> location
(17.2, 35.9, 'Z3')
>>> x, y, sector = location # parallel assignment
>>> x
17.2
>>> y
35.9
>>> sector
'Z3'

The assignment above can be called a destructuring assignment.

Style note: When getting multiple values from a tuple, use parallel
assignment rather than a series of indexings.

>>> x = location[0]
>>> y = location[1]
>>> sector = location[2]

Do we need tuples?

169

Are tuples just impoverished lists? Do we really need them?

• Using a tuple communicates to the reader that the
collection of items is fixed in size and that the items
won't change.
• (0,0) # 2d point
• (10,-17,-34) # 3d point
• (5,7,59) # hours, minutes, seconds
• (10,5,2,5.6) # box dimensions and weight
• ("Gould-Simpson", 32.229805, -110.9550234)
• ("upper","left")

Do we need tuples?

170

Dictionary keys must be immutable values.

• Tuples can be keys because they are immutable.
>>> d = {}
>>> d[(0,0)] = "origin"

>>> d
{(0, 0): 'origin'}

• Lists cannot be keys because they are mutable.
>>> d[[75,98]] = "center"
...
TypeError: unhashable type: 'list'

Problem

172

A function can only return one value but sometimes we want
that one value to consist of multiple values.

Example:
The function min_max(L) returns the smallest and largest
even numbers in L, a list of integers.

What should be the type of the value returned by min_max?
A tuple!

Usage:
>>> min_max([5, 10, 3, 4, 7, 12, 18, 1, 25])
(4, 18)

173

The function min_max(L) returns a tuple of the smallest
and largest numbers in L, a list of integers.

Use the min() and max() built-in functions:

Reminder:
>>> L = [10,5,7,12,3]
>>> min(L)
3
>>> max(L)
12

Work with your neighbor(s)
and write min_max. (2 min)

Exercise

Solution

174

def min_max(L):
"""Returns the smallest and largest even values in L"""
evens = []
for num in L:

if num % 2 == 0:
evens.append(num)

return min(evens),max(evens)

Usage:
>>> low, high = min_max([5, 10, 3, 4, 7, 12, 18, 1, 25])
>>> print("The range is", low, "..", high)
The range is 4 .. 18

Use parallel
assignment to unpack

the tuple

dict.items()

175

Dictionaries have an items() method that is similiar to the keys() and
values() methods.

Speculate: What does dict.items() return?
>>> romans
{'V': 5, 'L': 50, 'I': 1, 'X': 10}
>>> romans.items()
dict_items([('V', 5), ('L', 50), ('I', 1), ('X', 10)])

Let’s revisit print_pairs from earlier:

def print_pairs2(d):
for key, value in d.items():

print(key, ":", value)

Speculate: What does sorted(dict.items()) return?

176

Print the keys and values of the catalog dictionary
using items().

Work with your neighbor(s)

EXERCISE-ICA-6 prob 1

Tuples are sequences

177

Along with lists, strings, and ranges, tuples are sequences. All of
the sequence operations (shown below) can used with tuples.

Source: https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

The elements
are: i, i+k, i+2k,

...

Tuples are sequences

178

Let's try some sequence operations on tuples.
>>> t = (10, "twenty", 30.0, [40])

>>> len(t)
4

>>> t2 = t * 2
>>> t2
(10, 'twenty', 30.0, [40], 10, 'twenty', 30.0, [40])

>>> t2[1:-1]
('twenty', 30.0, [40], 10, 'twenty', 30.0)

Parentheses often optional

179

Tuple literals can often be written without parentheses
>>> t = 3,4
>>> type(t)
<class 'tuple'>

>>> for item in 3,4,5:
...

>>> low,high = min_max([3,4,7,1,8])

def f():
return 3,4

Use parentheses if needed for clarity

Lists vs. tuples

180

Thoughts about choosing a list vs. a tuple to store items:
• Needing to store varying numbers of items requires a list.

• Needing to assign to items requires a list.

• Grouping a fixed number of values, like coordinates in a 3D-
point, suggests a tuple.

• A group of a fixed number of dissimilar values, like name,
weight, birthday, and address especially suggests a tuple.

• A sequence of elements used as a dictionary key requires a
tuple.

But, there are no hard and fast rules. Sometimes the choice is
simply a matter of style. Experience helps, too.

Mixtures of mutabilities

181

>>> x = (['aa', 'bb'], ['cc', 'dd'], ['ee'])
>>> x[0] = 'ff'
Traceback (most recent call last):

x[0] = 'ff'
TypeError: 'tuple' object does not support item assignment

>>> x[0][0] = 'ff'
>>> x
(['ff', 'bb'], ['cc', 'dd'], ['ee'])

>>> x[0][0][0] = 'a'
Traceback (most recent call last):

x[0][0][0] = 'a'
TypeError: 'str' object does not support item assignment

Tuples are immutable

Lists are mutable

Strings are immutable

>>> x = (['aa', 'bb'], ['cc', 'dd'], ['ee'])
>>> x[0] = 'ff'
Traceback (most recent call last):

x[0] = 'ff'
TypeError: 'tuple' object does not
support item assignment

>>> x[0][0] = 'ff'
>>> x
(['ff', 'bb'], ['cc', 'dd'], ['ee'])

>>> x[0][0][0] = 'a'
Traceback (most recent call last):

x[0][0][0] = 'a'
TypeError: 'str' object does not
support item assignment 182

a a

b b
d d

c c e e

()x

[] [] []

0 1 2 tuple

lists

strings

183

Working with mixtures of types.

Work with your neighbor(s)

EXERCISE-ICA-6 prob 2

Will it work?

184

Which of the following assignments work?
>>>> t = (1,"two",[3,4,5])
>>> t[2][1] = (4,4)
>>> t
(1, 'two', [3, (4, 4), 5])

>>> t2 = 6,7
>>> t[-1].append([t2])
>>> t
(1, 'two', [3, (4, 4), 5, [(6, 7)]])

>>> t2[0] = "six"
...
TypeError: 'tuple' object does not support item assignment

Observe:
>>> x = [[10,20]]

>>> y = x * 3
>>> y
[[10, 20], [10, 20], [10, 20]]

>>> y[0].append(30)

>>> y
[[10, 20, 30], [10, 20, 30], [10, 20, 30]]

Why??
The list replication (x * 3) created a list with three references to x!

Surprise!

185

Observe:
>>> x = [[10,20]]

>>> y = x * 3
>>> y
[[10, 20], [10, 20], [10, 20]]

>>> y[0].append(30)

>>> y
[[10, 20, 30], [10, 20, 30], [10, 20, 30]]

References:
o important topic!
o will study in detail soon

[]

Surprise!

186

[10, 20]

x

[, ,]

[10,20,30]

python review:
format()
(read on your own)

Motivation

Printing a mix of values and literals can be pretty tedious:
>>> a, b, c = 10, 'test', 3.4

>>> print("a = " + str(a) + ", b = " + b + ", c = " + str(3.4))
a = 10, b = test, c = 3.4

Here's another way:
>>> print("a = {}, b = {}, c = {}".format(a, b, c))
a = 10, b = test, c = 3.4

189

parallel assignment

What is it?

At hand:
>>> print("a = {}, b = {}, c = {}".format(a, b, c))
a = 10, b = test, c = 3.4

Work with your neighbor(s):
Attempt to explain how the print() statement is
being evaluated. In particular:

What is "format"?
What type does format produce?
What are the curly braces doing?

190

What is it?
At hand:

>>> print("a = {}, b = {}, c = {}".format(a, b, c))
a = 10, b = test, c = 3.4

• format() is a string method.
• It interpolates each argument in turn where {}

appears.
• It returns a string.

Analogs in other languages:
• printf() in C
• String.format() in Java

191

(How would you "prove" that?)

count_chars.py improvement
For reference:

>>> "{}-{}".format(10,20)
'10-20'

Recall this loop from count_chars.py:
for c in chars:

count = count_char(c, lines)
print("'" + c + "': " + str(count)) # example: 'a': 10

Problem: Rewrite the print to use format.
>>> print("'{}': {}".format(c, count))
'a': 10

192

format() can do lots!
Here's a sampling of the many kinds of specifications that
format() handles:

>>> "|{:6d}|>{:^20}<, third = {:7.3f}, {!r}".
format(100,"center me!",100/3," a ")

"| 100|> center me! <, third = 33.333, ' a '"

More on format():
https://docs.python.org/dev/library/string.html#format-
string-syntax

193

https://docs.python.org/dev/library/string.html%23format-string-syntax

