CSc 120

Introduction to Computer Programming ||

02: Basics of Object-Oriented Programming

Programming paradigms

* Procedural programming:

programs are decomposed into procedures (functions)
that manipulate a collection of data structures

* Object-oriented programming

programs are composed of interacting entities (objects)
that encapsulate data and code

What is an object?

To human beings, an object is:
"A tangible and/or visible thing; or
(a computer, a chair, a noise)

Something that may be apprehended intellectually; or
(the intersection of two sets, a disagreement)

Something towards which thought or action is directed"
(the procedure of planting a tree)

-Grady Booch

Objects

* Object-oriented programming
models properties of, and
interactions between, entities in
the world

* What are some properties of
Angry Birds?

* How do they interact?

* What about physcial locations on
the planet?

Objects

* Objects have state and behavior

the state of an object can influence its behavior
the behavior of an object can change its state

* State:

all the properties of an object and the values of those
properties

* Behavior:

how an object acts and reacts, in terms of changes in state
and interaction with other objects

Object: An entity that combines state and behavior

EXERCISE (Whiteboard)

Consider an ipod:

e State (properties):
— What properties does an ipod have?

* Behavior (operations):
— What does an ipod do?
— What operations could we define for an ipod?

The Class concept

e Class:

A set of objects having the same behavior and underlying
structure

* A class is a template for defining a new type of object

An object is an instance of a class.

Blueprint analogy

iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

used to create instances of an

Pod

iPod #1 iPod #2 iPod #3
state: state: state:
song = song = "Letting song =
"1,000,000 Miles" You" "Discipline"
volume = 17 volume =9 volume = 24
battery life = battery life = battery life =
2.5 hrs 3.41 hrs 1.8 hrs
behavior:/ . ’ behavior: . - behavior: . -
power on/o ke | power on/o power on/o
change s change i change i
station/son station/son station/son
change volume change volume change volume
choose random choose random J choose random J
song ‘ song ‘ song ‘

Classes

* In Python, that blueprint is expressed by a class
definition

A class describes the state and behavior of similar
objects

* The attributes of a class represent the state of an
Instance

* The methods of a class describe the behavior

Example: a set of students at UA

Name |ID Major Year Grades

Alice 012 CS Freshman |CSC 110: B; CSC 120: A

Bob 025 Physics Junior GEO 215: B; Phys 120: C; GEO 325: A
Charlie |101 Music Senior MUS 210: B; MUS 423: A; CSC110: B

10

Example: a set of students at UA

Name |ID Major Year Grades

Alice 012 CS Freshman |CSC 110: B; CSC 120: A

Bob 025 Physics Junior GEO 215: B; Phys 120: C; GEO 325: A

Charlie |101 Music Senior MUS 210: B; MUS 423: A; CSC110: B
Name [Alice Name (Bob Name |Charlie
ID 012 ID 025 ID 101
Major |CS Major |Physics Major [Music
Year Freshman Year [Junior Year Senior
Grades |... Grades|... Grades |...

11

Example: a set of students at UA

Major

()

Year

Freshman

Grades |...

Objects

Bob

Charlie

025

101

Major

Geosciences

Major

Music

Year

Junior

Year

Senior

Grades |...

Grades |...

12

Example: a set of students at UA

//N

Name\

Alice

ID

012

Major

CS

Year

Freshman

Grades f...

/

Attributes

or

Instance variables

Name

Bob

4Varne\\

Charlie

ID

25

ID

101

Major

Seosciences

Major

Music

Year

unior

Year

Senior

Grades {...

Grades f...

%

13

Example: a set of students at UA

Class

Name |Alice

ID 012
Major |[CS

Year Freshman
Grades

Name

ID

Major

Year

Grades

Name |Bob

ID 025

Major |Geosciences
Year Junior
Grades

Name |Charlie
ID 101
Major [Music
Year Senior
Grades

14

Example: a set of students at UA

Name

ID

Class

Major

Year

Grades

Instances of the class

Name |Alice Bob Name |Charlie
ID 012 ID 025 ID 101
Major |[CS Major |Geosciences Major [Music

Year Freshman Year Junior Year Senior

Grades |... Grades |... Grades |...

15

Objects

* An object consists of:
a state
o given by the values of its attributes or instance variables

a set of behaviors

o given by its methods (e.g., accessing/modifying its instance
variables)

* An object models an entity in a real or virtual world
or system

Example: Student object

instance variables

7

methods

* name
e id

* major
* year

* grades

methods:
like functions

they look at and/or modify the

instance variables of the object

e get_name(), set_name()

e get_id(), set_id()

e get_major(), set_major()
e get_vyear(), set_year|()

e get grades(), add_grade()

e update_grade()
e compute GPA()

Name

Alice

ID

012

Major

CS

Year

Freshman

Grades |...

17

Classes

* A class describes the state and behaviors of a set of
similar objects
state: given by instance variables
behaviors: given by the methods of the class

* The class is the template for making objects

Example: Student class

class Student:
def __init__(self, name, id):
self._ name = name
self. id=id

def get_name(self):
return self._name

19

Example: Student

@ Stud@/\

def __init__(self, name, id):

self._ name = name
self. id=id

def get_name(self):
return self._name

class

The keyword class defines a
class

20

Example: Student class

class Student:
def __init__(self, name, id):-
self._ name = name
self. id=id

def get_name(self):

return self._name

indented defs define the
methods of the class

the first non-indented line
ends the class definition

21

Example: Student class

class Student: _, the first argument of each
def init (self, name, id),”, method (self) denotes the
- object being referred to
self._ name = name

self. id =id

by convention this argument is written 'self' —
this is recommended but not mandatory

def get_name(self):
return self._ name

22

Example: Student class

class Student: the __init__(...) method is
def __init__(self, special:

self._ name = name
self. id =id

 called when an object is
created (right after its creation)

e used to initialize the

def get_name(self): object's instance variables

* the initial values are
supplied as arguments to
_init__(...)

return self._ name

23

Example: Student class

class Student: instance variables
def __init__(self Jid): _name
“id
self. name=name
self. id =id These refer to attributes of
the object being referred
def get_name(self): to, and so are written
return self. name self._name

self. id

24

Example: using the Student class

class Student: ating a new Student

def __init__(self, mameyid);

self._ name = name
self. id=id * invoking a method:
B name =s.get_name()

def get_name(self):
return self._ name

25

Method invocation

class Student:
def __init__(self, name, id):

self. name = name
self. id =id

@name(self):

return self._ name

a = Student(“Sally”, 202) # create a Student object

a.get_name() # invoke a method

Think of "self" as an alias to the current object when the method is called.

26

EXERCISE —ICA-7 prob 1

class Student:
def __init__(self, name, id):
self._ name = name
self. id =id

def get_name(self):
return self._name

1. Write a method get_id that returns a Student object’s id.

2. Create a Student object with name 'Harry' and id 342.

27

Example: A tally counter

Has a name.
Starts a counter at zero.

Increments the counter on a click.

Suppose we want to define a class for a Counter:
* Data: 777

— what data might we want to associate with a Counter?
* Methods: 777

— what methods are required for Counter objects?

* Discuss with your neighbors...

32

Example: A tally counter '{}
=/ VN

-

B

class Counter: —
1000

def __init__ (self, name):
self._ hame = name
self. count=0

def click(self):
self. count+=1

def count(self):
return self._count

33

EXERCISE — ICA-7 prob 2a

Add a reset() method that will set the count to zero.

class Counter:
def __init__ (self, name):
self. name = name

self. count=0

def click(self):
self. count+=1

34

EXERCISE — ICA-7 prob 2b

Add a get _reset count() method that returns the number of
times the counter has been reset.

class Counter:
def __init__ (self, name):
self. name = name

self. count=0

def click(self):
self. count+=1

35

Printing out objects

* |n general, the Python
system doesn't know how
to print user-defined
objects

inconvenient

>>> class Student:
def init (self, name, id):
self. nhame = name

seff._id =id * |deally, each object (or
class) should be able to
r ~ determine how it is
>>> s1 = Student('Pat’, '623') printed
>>>
 >>> print(s1) y

<__main__.Student object at 0x10238b9e8>
>>>

36

Printing out objects: str ()

>>> class Student: * __str_ (‘2 : a special
. _ method for constructing a
def __init_ (self, name, id): string from an object
self._ name = name
self._id =id
def _str_ (self):
return "Student_" + self._ name + ":" + str(self._id)

~ * called by str() and print()
>>>s1 = Student('Pat’, '623') to convert objects to
: strings
>>> print(s1)

Student_Pat:623
>>>

37

EXERCISE - Whiteboard

Write a __str _ method for Counter.

class Counter: &\

def __init__ (self, name): »\ A

self. name = name

self. count=0

def click(self):
self. count+=1

38

Solution

Write a __str _ method for Counter.

class Counter: N
def __init__ (self, name): EZm
self. name = name —

self. count=0

def str (self):

return " Counter: " + self._ name +"->" +\

str(self._count)

39

TERMINOLOGY

class Student:
def __init__(self, name, id):
self._ name = name
self. id=id

def get_name(self):

return self._name

Terminology

Provide the names of the items pointed to by the arrows.

(self, name, id): ?

|

def get_name(self):
return self._ name

41

Terminology

Provide the names of the items pointed to by the arrows.

class Student:
(self, name, id): -- class definition

-- constructor

-- instance variables or
attributes (or fields!)

def get_name(self):

return self._name -- method definition

42

Terminology

What happens at the arrow?

class Student:

def _init__(self, name, id):

self._ name = name
self. id=id

def get_name(self):

return self._name
?

a =(Student(“Sally”, 202) /

43

Terminology

What happens at the arrow?

class Student:

def _init__(self, name, id):

self._ name = name
self. id=id

def get_name(self):

return self._name

--the __init_ () constructor

e / method is called and a Student
a =(Student(“Sally”, 202) object is created

44

EXERCISE-ICA-8 prob 1

Download the counter-with-str.py file (next to ICA-8)
Do prob 1, a) thru e)
class Counter:

def __init__ (self, name):
self. name = name

self. count=0

def click(self):
self. count+=1

45

Recall: __str ()

>>> class Student: * __str_ (‘2 : a special
. _ method for constructing a
def __init_ (self, name, id): string from an object
self._ name = name
self._id =id
def _str_ (self):
return "Student_" + self._ name + ":" + str(self._id)

~ * called by str() and print()
>>> s1 = Student('Pat', 623) to prO_dUC,e a string from
_ an object’s data
>>> print(s1)

Student_Pat:623
>>>

46

Special methods: repr

* Returns a string
the "official" string representation of the object
must look like a valid Python expression
e repr__(obj):
should provide a useful description for obj
(it can be the same description as provided in _ _str_)

47

Special methods: repr

Example: [ass: Student
attributes: | name
id
major

def __str__(self): ¢
return "Student_" + self. name +": " + self._id _str{self)__ .
called by str(obj)

def __repr__(self):

return "Student(" + self._name +\ it
" self_id +\ __repriself)__
. called by repr(obj)
" "+self._major +")"

48

_repr vs. str

e str :aimsto be readable

string representation of an object
used by the end user, e.g., for printing out the object

e _repr__ :aimsto be unambiguous
string representation of an object

if the class defines _ _repr_ () butnot __str()
Python will use repr

very useful when a data structure (ex. a list) contains
user-defined objects

o Python will show the user-defined info on the objects

Example: Point class

class Point:
def _init_ (self, x, y):

self. x=x
self. y=vy
Methods:

— what methods might we want to associate with
point objects?
o change a point object’s position by a given amount
o compute its distance from the origin (0,0)

51

EXERCISE (Whiteboard)

Write a method translate that changes a Point's location
by a given dx, dy amount.

Write a method distance from origin thatreturns
the distance between a Point and the origin, (0,0). (Need to

import math library to call math.sqrt())
Use the formula: 2 p
J \/(xz_xl) +()’2_J’1)

52

Class Point

import math
class Point:
def __init_ (self, x, y):
self. x=x
self. y=vy
def translate(self, dx, dy):
self. x =self._x+ dx
self. y=self. y+dy
def distance from_origin(self):
return math.sqgrt(self._x**2+ self. y **2)

53

class Student : Initializing attributes

More initialization

class Student:
def __init__(self, name, id, major, year):
self._name = name
self. id=id
self._major = major

self._year = year

def main():

student = Student(name, id, major, year)

Less initialization

class Student:
def __init__(self):
self._ name="
self. id= -1

def main():
student = Student()

student.set_name(name)

student.set_id(id)

54

class Student : Initializing attributes

More initialization Less initialization

class Student:
def __init__(self):

class Student:

def __init__(self, name, id, major, year):

self._ name="
self._name = name
self. id=-1
self. id=id
self._major = major
self._year = year def main():
def main(): student = Student()

student.set_name(name)

Typically, it's better to let each class handle its student.set_id(id)
own internal details.

Avoid letting the outside/world know about the internals of the class.

This is encapsulation.

55

class Student : Initializing attributes

More initialization Less initialization
class Student: class Student:
def __init__(self, name, id, major, year): def__init__(self):
self._name = name self._name ="
self. id=""

self. id=id
self._major = major

self._year = year main():

student = Student|()

def main():
student.set_name(name)

student.set_id(id)

If details have to be handled by the outside world,
it increases the complexity of the program.

It makes it harder to change the implementation
later.

56

class Student : Initializing attributes

More initialization

class Student: A good class (like a good function)
facilitates thinking abstractly.

fef __init__(self, name, id, major, year):
self._name = name
self._id=id

self._major = major

e, Note to C programmers: Don't think

of this as a struct with 4 fields.

The methods are part of the object!
self._year = year

This expression causes an instance

def main(): of the class Student to be created.

student =Student(name, id, major, year)

57

Encapsulation

e encapsulation: Hiding implementation details of a
class

Goal: Minimize how much of the internal state is visible
to the outside world

Allows you to change the implementation

Allows you to think at a higher level of abstraction

o separates external view (behavior) from internal view (state)

Protects the data

Benefits of encapsulation

* Provides abstraction between an object and users of the
object.

* Protects an object from unwanted access by code outside the
class.
A bank app forbids a client to change an Account's balance.

[}

* Allows you to change the class implementation. r9)

Point could be rewritten to use polar coordinates ;
(radius r, angle 8), but with the same methods. é

\ 4

* Allows you to constrain objects' state.
Example: Only allow Points with non-negative coordinates.

59

EXERCISE — ICA-8 Prob 2

The "+" key on the keyboard is broken. Implement Counter
using another means to keep track of the count.
class Counter:
def __init__ (self, name):
self._ name = name

self. count="7

def click(self):
self. count="77?

def count(self):
return ?7?7

60

EXERCISE — ICA-8 Prob (sol)

class Counter:
def __init__ (self, name):
self._ name = name
self. count =]

def click(self):
self._count.append(1)

def count(self):
return len(self.) count)

61

Special methods: eq

* When are two objects equal?
students (people): the name alone may not be enough
dictionaries, sets: order of elements unimportant

In general: depends on what the object denotes (i.e., its
class)

* Python provides special methods __eq_ () and
__ne__() for this

a class can defineitsown __eq__()and __ne_ ()
methods to define equality

Special methods: eq

Example:

class Student:
def __init__ (self, name, id):

self._ name = name
self. id =id

def _eq__ (self, other):

return self._ name == other._name \
and self._id == other._id

63

Special methods: eq

class Student:

def _eq__(self, other):
return self._ name == other._name \
and self._id == other. _id

* |s the special method used like this?
sl. eq_ (s2)

* No. We are able to use the “==" operator
sl ==52

64

Special methods: eq

Eile Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[GCC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more
information.
>>> class Student:
def __init__ (self, name, 1id):
self. _name = name
self._id = id
def __eq_ (self, other):
return self. _name == other._name \
and self._id == other._id
>>> gl = Student('John', '123")
>>> g2 = Student('John', '456")
>>> g3 = gtudent ('John', '123")
(>>> sl == s2
False
>>> gl == g3 .
True == on the objects calls the
>>> __ed__() method of the class
|

|Ln: 19]col: 4

65

EXERCISE — ICA-9 prob 1

Write an _ _eq _ method for Point.

Special methods: rich comparison

__eq__() isan example of a rich comparison method:

Comparison operator Method called
== _—eq__()
|= __ne__()
< _ It ()
<= _le_ ()

> _-gt__()
>= _ge__()

len

Special methods: = ;iains

For a class that acts like a collection of items:

You want... You write... And Python calls...

the no. of items in

. len(s s. _len

the object s (s) —len__{
whether the

object s contains | Xins s._contains__ (x)

an item x

68

EXERCISE — ICA-9 probs 2-3

Do problems 2 thru 3:
Implement two more methods for the Point class.

69

Public and private attributes

* Some languages allow the visibility of attributes to be
— public : visible to all code
or
— private : visible only within the classt

* Our practice is to only use private attributes to enforce
encapsulation

T Our Pythonic convention is that" " at the beginning of
an attribute name denotes that it is "private"

T https://www.python.org/dev/peps/pep-0008/

T It is a signal to the user that they should not modify the
instance variable.

70

https://www.python.org/dev/peps/pep-0008/

Class attribute naming conventions

one leading underscore
self._varl

Indicates that the attribute is "not public" and
should only be accessed by the class's internals
(convention; not enforced by Python)

one trailing underscore
selfvarl

Used to avoid conflicts with Python keywords or
functions, e.g., list_, class_, dict_

two leading underscores
self. varl

Invokes name mangling: from outside the class
to enforce private

e.g., self. _varl appears to be at
YourClassName._YourClassName__varl

two leading + trailing
underscores
self. _varl _

Intended only for names that have special
significance for Python, e.g., __init__

71

Classic method styles

* more terminology

e getter and setter methods

used to access (getter methods) and modify (setter
methods) a class's private variables

* helper methods
methods that help other methods perform their tasks
not used outside of the class

72

Example: setter

class Point:

def __init_ (self, x, y):
self. x=x
self. y=vy

def move_to(self, x, y):
self. x=x
self. y=vy

def get_x(self):
return self._x

def get_y(self):
return self._y

\

setter

73

Example: setter

class Point:
def __init_ (self, x, y):
self. x=x
self. y=vy
def move_to(self, x, y):
self. x=x
self. y=vy

def get_x(self): \
return self._x /
def get_y(self):

return self._y

getters

74

EXERCISE — ICA-S

Do problem 4.
Don’t leave before the end of lecture!

We will continue with the lecture.

Example: getter

class BookData:
def __init__ (self, author, title, rating):
self. author = author
self._title = title
self. _rating = rating

def get_author(self):

return self._author \

def get rating (self): ————
return self._rating

getters

76

Methods vs. functions

* Not associated with any
class or object

— invoked by name alone
* Arguments passed
explicitly

* Operates on data
passed to it

e Associated with a class
or object

— invoked by object.name

* The object for which it
was called is passed
implicitly

e Can operate on data
contained within the

class

77

Methods

 Methods sometimes need temporary variables
use variables as in functions
don’t use an instance variable for something temporary
e.g.,

foriin range(len(self._alist)):

* Classes often need helper methods

a method that helps other methods in the class perform a
task

not used outside of the class
define them like any other method

call them within the class using self, e.g.:
o self.helper(...)

Problem (Whiteboard)

a) Write a method called clean_word(). Have it remove the
punctuation of a string in text and return the cleaned version

b) Callitinfrom _init ()

class Word:
def __init_ (self, text):
store a clean version of the word
strip off punctuation and convert to lowercase
self. word = text.strip(".!:;,?-").lower()

def __str__(self):
return "Word(" + self._word +")"

79

Solution

Write a helper method clean _word() for method for Word.

class Word:
def __init_ (self, text):
self. word = self.clean_word(text)

def clean_word(self, text):
strip off punctuation and convert to lowercase
return text.strip(".!:;,?-").lower()

def __str__(self):
return "Word(" + self._word +")"

80

Summary: Class

* A class is a blueprint, or template, for the code and
data associated with a collection of objects

— the objects are instances of the class

Name
ID

Class

Major

Year

Grades

Instances of the class

Name |Alice Name (Bob Name |Charlie
ID 012 ID 025 ID 101
Major |CS Major |Geosciences Major |Music
Year Freshman Year Junior Year Senior
Grades |... Grades |... Grades |...

81

Summary: Instance variables

e A variable associated with an object
specifies some property of that object

each object has its own copy of the :“Da”‘e g“l;e
instance variables yo—
o updating one object's instance variables Year |Freshman
does not affect other objects Grades |...

* Examples:

* self._ name, self._id, etc. of a
Student object

* self. x and self._y of a Point object

82

Summary: Methods

* Methods are pieces of code associated with a class
(and instances of that class, i.e., objects)

they define the behaviors for these objects

* Examples:
getters: get_name(), get_id(), ...
setters: set_name(), set_id(), ...
special methods: __init_ (), __str__(), __eq_ (), ..

83

Object-oriented programming

Informally:

"Instead of a bit-grinding processor plundering data
structures, we have a universe of well-behaved
objects that courteously ask each other to carry out
their various desires."

-Dan Ingalls

84

