CSc 120

Introduction to Computer Programming ||

02: Basics of Object-Oriented Programming



Programming paradigms

* Procedural programming:

programs are decomposed into procedures (functions)
that manipulate a collection of data structures

* Object-oriented programming

programs are composed of interacting entities (objects)
that encapsulate data and code



What is an object?

To human beings, an object is:
"A tangible and/or visible thing; or
(a computer, a chair, a noise)

Something that may be apprehended intellectually; or
(the intersection of two sets, a disagreement)

Something towards which thought or action is directed"
(the procedure of planting a tree)

-Grady Booch



Objects

* Object-oriented programming
models properties of, and
interactions between, entities in
the world

* What are some properties of
Angry Birds?

* How do they interact?

* What about physcial locations on
the planet?




Objects

* Objects have state and behavior

the state of an object can influence its behavior
the behavior of an object can change its state

* State:

all the properties of an object and the values of those
properties

* Behavior:

how an object acts and reacts, in terms of changes in state
and interaction with other objects

Object: An entity that combines state and behavior



EXERCISE (Whiteboard)

Consider an ipod:

e State (properties):
— What properties does an ipod have?

* Behavior (operations):
— What does an ipod do?
— What operations could we define for an ipod?



The Class concept

e Class:

A set of objects having the same behavior and underlying
structure

* A class is a template for defining a new type of object

An object is an instance of a class.



Blueprint analogy

iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

used to create instances of an

Pod

iPod #1 iPod #2 iPod #3
state: state: state:
song = song = "Letting song =
"1,000,000 Miles" You" "Discipline"
volume = 17 volume =9 volume = 24
battery life = battery life = battery life =
2.5 hrs 3.41 hrs 1.8 hrs
behavior:/ . ’ behavior: . - behavior: . -
power on/o ke | power on/o power on/o
change s change i change i
station/son station/son station/son
change volume change volume change volume
choose random choose random J choose random J
song ‘ song ‘ song ‘




Classes

* In Python, that blueprint is expressed by a class
definition

A class describes the state and behavior of similar
objects

* The attributes of a class represent the state of an
Instance

* The methods of a class describe the behavior




Example: a set of students at UA

Name |ID Major Year Grades

Alice 012 CS Freshman |CSC 110: B; CSC 120: A

Bob 025 Physics Junior GEO 215: B; Phys 120: C; GEO 325: A
Charlie |101 Music Senior MUS 210: B; MUS 423: A; CSC110: B
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Example: a set of students at UA

Name |ID Major Year Grades

Alice 012 CS Freshman |CSC 110: B; CSC 120: A

Bob 025 Physics Junior GEO 215: B; Phys 120: C; GEO 325: A

Charlie |101 Music Senior MUS 210: B; MUS 423: A; CSC110: B
Name [Alice Name (Bob Name |Charlie
ID 012 ID 025 ID 101
Major |CS Major |Physics Major [Music
Year Freshman Year  [Junior Year Senior
Grades |... Grades|... Grades |...
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Example: a set of students at UA

Major

()

Year

Freshman

Grades |...

Objects

Bob

Charlie

025

101

Major

Geosciences

Major

Music

Year

Junior

Year

Senior

Grades |...

Grades |...
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Example: a set of students at UA

//N

Name\

Alice

ID

012

Major

CS

Year

Freshman

Grades f...

/

Attributes

or

Instance variables

Name

Bob

4Varne\\

Charlie

ID

25

ID

101

Major

Seosciences

Major

Music

Year

unior

Year

Senior

Grades {...

Grades f...

%

13




Example: a set of students at UA

Class

Name |Alice

ID 012
Major |[CS

Year Freshman
Grades

Name

ID

Major

Year

Grades

Name |Bob

ID 025

Major |Geosciences
Year Junior
Grades

Name |Charlie
ID 101
Major [Music
Year Senior
Grades
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Example: a set of students at UA

Name

ID

Class

Major

Year

Grades

Instances of the class

Name |Alice Bob Name |Charlie
ID 012 ID 025 ID 101
Major |[CS Major |Geosciences Major [Music

Year Freshman Year Junior Year Senior

Grades |... Grades |... Grades |...
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Objects

* An object consists of:
a state
o given by the values of its attributes or instance variables

a set of behaviors

o given by its methods (e.g., accessing/modifying its instance
variables)

* An object models an entity in a real or virtual world
or system



Example: Student object

instance variables

7

methods

* name
e id

* major
* year

* grades

methods:
like functions

they look at and/or modify the

instance variables of the object

e get_name(), set_name()

e get_id(), set_id()

e get_major(), set_major()
e get_vyear(), set_year|()

e get grades(), add_grade()

e update_grade()
e compute GPA()

Name

Alice

ID

012

Major

CS

Year

Freshman

Grades |...

17




Classes

* A class describes the state and behaviors of a set of
similar objects
state: given by instance variables
behaviors: given by the methods of the class

* The class is the template for making objects



Example: Student class

class Student:
def __init__(self, name, id):
self._ name = name
self. id=id

def get_name(self):
return self._name

19



Example: Student

@ Stud@/\

def __init__(self, name, id):

self._ name = name
self. id=id

def get_name(self):
return self._name

class

The keyword class defines a
class

20



Example: Student class

class Student:
def __init__(self, name, id):-
self._ name = name
self. id=id

def get_name(self):

return self._name

indented defs define the
methods of the class

the first non-indented line
ends the class definition

21



Example: Student class

class Student: _, the first argument of each
def init (self, name, id),”, method (self) denotes the
- object being referred to
self._ name = name

self. id =id

by convention this argument is written 'self' —
this is recommended but not mandatory

def get_name(self):
return self._ name

22



Example: Student class

class Student: the __init__(...) method is
def __init__(self, special:

self._ name = name
self. id =id

 called when an object is
created (right after its creation)

e used to initialize the

def get_name(self): object's instance variables

* the initial values are
supplied as arguments to
_init__(...)

return self._ name

23



Example: Student class

class Student: instance variables
def __init__(self Jid):  _name
“id
self. name=name
self. id =id These refer to attributes of
the object being referred
def get_name(self): to, and so are written
return self. name self._name

self. id

24



Example: using the Student class

class Student: ating a new Student

def __init__(self, mameyid);

self._ name = name
self. id=id * invoking a method:
B name =s.get_name()

def get_name(self):
return self._ name

25



Method invocation

class Student:
def __init__(self, name, id):

self. name = name
self. id =id

@name(self):

return self._ name

a = Student(“Sally”, 202) # create a Student object

a.get_name() # invoke a method

Think of "self" as an alias to the current object when the method is called.

26



EXERCISE —ICA-7 prob 1

class Student:
def __init__(self, name, id):
self._ name = name
self. id =id

def get_name(self):
return self._name

1. Write a method get_id that returns a Student object’s id.

2. Create a Student object with name 'Harry' and id 342.

27



Example: A tally counter

Has a name.
Starts a counter at zero.

Increments the counter on a click.

Suppose we want to define a class for a Counter:
* Data: 777

— what data might we want to associate with a Counter?
* Methods: 777

— what methods are required for Counter objects?

* Discuss with your neighbors...
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Example: A tally counter '{}
=/ VN

-

B

class Counter: —
1000

def __init__ (self, name):
self._ hame = name
self. count=0

def click(self):
self. count+=1

def count(self):
return self._count

33



EXERCISE — ICA-7 prob 2a

Add a reset() method that will set the count to zero.

class Counter:
def __init__ (self, name):
self. name = name

self. count=0

def click(self):
self. count+=1
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EXERCISE — ICA-7 prob 2b

Add a get _reset count() method that returns the number of
times the counter has been reset.

class Counter:
def __init__ (self, name):
self. name = name

self. count=0

def click(self):
self. count+=1
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Printing out objects

* |n general, the Python
system doesn't know how
to print user-defined
objects

inconvenient

>>> class Student:
def init (self, name, id):
self. nhame = name

seff._id =id * |deally, each object (or
class) should be able to
r ~ determine how it is
>>> s1 = Student('Pat’, '623') printed
>>>
 >>> print(s1) y

<__main__.Student object at 0x10238b9e8>
>>>
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Printing out objects:  str ()

>>> class Student: * __str_ (‘2 : a special
. _ method for constructing a
def __init_ (self, name, id): string from an object
self._ name = name
self._id =id
def _str_ (self):
return "Student_" + self._ name + ":" + str(self._id)

~ * called by str() and print()
>>>s1 = Student('Pat’, '623') to convert objects to
: strings
>>> print(s1)

Student_Pat:623
>>>
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EXERCISE - Whiteboard

Write a __str _ method for Counter.

class Counter: &\

def __init__ (self, name): »\ A

self. name = name

self. count=0

def click(self):
self. count+=1

38



Solution

Write a __str _ method for Counter.

class Counter: N
def __init__ (self, name): EZm
self. name = name —

self. count=0

def str (self):

return " Counter: " + self._ name +"->" +\

str(self._count)

39



TERMINOLOGY

class Student:
def __init__(self, name, id):
self._ name = name
self. id=id

def get_name(self):

return self._name



Terminology

Provide the names of the items pointed to by the arrows.

(self, name, id): ?

|

def get_name(self):
return self._ name

41



Terminology

Provide the names of the items pointed to by the arrows.

class Student:
(self, name, id): -- class definition

-- constructor

-- instance variables or
attributes (or fields!)

def get_name(self):

return self._name -- method definition

42



Terminology

What happens at the arrow?

class Student:

def _init__(self, name, id):

self._ name = name
self. id=id

def get_name(self):

return self._name
?

a =(Student(“Sally”, 202) /

43



Terminology

What happens at the arrow?

class Student:

def _init__(self, name, id):

self._ name = name
self. id=id

def get_name(self):

return self._name

--the __init_ () constructor

e / method is called and a Student
a =(Student(“Sally”, 202) object is created
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EXERCISE-ICA-8 prob 1

Download the counter-with-str.py file (next to ICA-8)
Do prob 1, a) thru e)
class Counter:

def __init__ (self, name):
self. name = name

self. count=0

def click(self):
self. count+=1
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Recall: __str ()

>>> class Student: * __str_ (‘2 : a special
. _ method for constructing a
def __init_ (self, name, id): string from an object
self._ name = name
self._id =id
def _str_ (self):
return "Student_" + self._ name + ":" + str(self._id)

~ * called by str() and print()
>>> s1 = Student('Pat', 623) to prO_dUC,e a string from
_ an object’s data
>>> print(s1)

Student_Pat:623
>>>
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Special methods:  repr

* Returns a string
the "official" string representation of the object
must look like a valid Python expression
e repr__(obj):
should provide a useful description for obj
(it can be the same description as provided in _ _str_ )
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Special methods:  repr

Example: [ass: Student
attributes: | name
id
major

def __str__(self): ¢
return "Student_" + self. name +": " + self._id _str{self)__ .
called by str(obj)

def __repr__(self):

return "Student(" + self._name +\ it
" self_id +\ __repriself)__
. called by repr(obj)
" "+self._major +")"

48



_repr vs. str

e str :aimsto be readable

string representation of an object
used by the end user, e.g., for printing out the object

e _repr__ :aimsto be unambiguous
string representation of an object

if the class defines _ _repr_ () butnot __str()
Python will use repr

very useful when a data structure (ex. a list) contains
user-defined objects

o Python will show the user-defined info on the objects



Example: Point class

class Point:
def _init_ (self, x, y):

self. x=x
self. y=vy
Methods:

— what methods might we want to associate with
point objects?
o change a point object’s position by a given amount
o compute its distance from the origin (0,0)
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EXERCISE (Whiteboard)

Write a method translate that changes a Point's location
by a given dx, dy amount.

Write a method distance from origin thatreturns
the distance between a Point and the origin, (0,0). (Need to

import math library to call math.sqrt())
Use the formula: 2 p
J \/(xz_xl) +()’2_J’1)
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Class Point

import math
class Point:
def __init_ (self, x, y):
self. x=x
self. y=vy
def translate(self, dx, dy):
self. x =self._x+ dx
self. y=self. y+dy
def distance from_origin(self):
return math.sqgrt(self._x**2+ self. y **2)
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class Student : Initializing attributes

More initialization

class Student:
def __init__(self, name, id, major, year):
self._name = name
self. id=id
self._major = major

self._year = year

def main():

student = Student(name, id, major, year)

Less initialization

class Student:
def __init__(self):
self._ name="
self. id= -1

def main():
student = Student()

student.set_name(name)

student.set_id(id)
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class Student : Initializing attributes

More initialization Less initialization

class Student:
def __init__(self):

class Student:

def __init__(self, name, id, major, year):

self._ name="
self._name = name
self. id=-1
self. id=id
self._major = major
self._year = year def main():
def main(): student = Student()

student.set_name(name)

Typically, it's better to let each class handle its student.set_id(id)
own internal details.

Avoid letting the outside/world know about the internals of the class.

This is encapsulation.
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class Student : Initializing attributes

More initialization Less initialization
class Student: class Student:
def __init__(self, name, id, major, year): def__init__(self):
self._name = name self._name ="
self. id=""

self. id=id
self._major = major

self._year = year main():

student = Student|()

def main():
student.set_name(name)

student.set_id(id)

If details have to be handled by the outside world,
it increases the complexity of the program.

It makes it harder to change the implementation
later.
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class Student : Initializing attributes

More initialization

class Student: A good class (like a good function)
facilitates thinking abstractly.

fef __init__(self, name, id, major, year):
self._name = name
self._id=id

self._major = major

e, Note to C programmers: Don't think

of this as a struct with 4 fields.

The methods are part of the object!
self._year = year

This expression causes an instance

def main(): of the class Student to be created.

student =Student(name, id, major, year)
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Encapsulation

e encapsulation: Hiding implementation details of a
class

Goal: Minimize how much of the internal state is visible
to the outside world

Allows you to change the implementation

Allows you to think at a higher level of abstraction

o separates external view (behavior) from internal view (state)

Protects the data



Benefits of encapsulation

* Provides abstraction between an object and users of the
object.

* Protects an object from unwanted access by code outside the
class.
A bank app forbids a client to change an Account's balance.

[}

* Allows you to change the class implementation. r9)

Point could be rewritten to use polar coordinates ;
(radius r, angle 8), but with the same methods. é

\ 4

* Allows you to constrain objects' state.
Example: Only allow Points with non-negative coordinates.
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EXERCISE — ICA-8 Prob 2

The "+" key on the keyboard is broken. Implement Counter
using another means to keep track of the count.
class Counter:
def __init__ (self, name):
self._ name = name

self. count="7

def click(self):
self. count="77?

def count(self):
return ?7?7
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EXERCISE — ICA-8 Prob (sol)

class Counter:
def __init__ (self, name):
self._ name = name
self. count =]

def click(self):
self._count.append(1)

def count(self):
return len(self.) count)
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Special methods: eq

* When are two objects equal?
students (people): the name alone may not be enough
dictionaries, sets: order of elements unimportant

In general: depends on what the object denotes (i.e., its
class)

* Python provides special methods __eq_ () and
__ne__() for this

a class can defineitsown __eq__()and __ne_ ()
methods to define equality



Special methods: eq

Example:

class Student:
def __init__ (self, name, id):

self._ name = name
self. id =id

def _eq__ (self, other):

return self._ name == other._name \
and self._id == other._id
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Special methods:  eq

class Student:

def _eq__(self, other):
return self._ name == other._name \
and self._id == other. _id

* |s the special method used like this?
sl. eq_ (s2)

* No. We are able to use the “==" operator
sl ==52
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Special methods:  eq

Eile Edit Shell Debug Options Window Help

Python 3.4.3 (default, Nov 17 2016, 01:08:31)
[GCC 4.8.4] on linux
Type "copyright", "credits" or "license()" for more
information.
>>> class Student:
def __init__ (self, name, 1id):
self. _name = name
self._id = id
def __eq_ (self, other):
return self. _name == other._name \
and self._id == other._id
>>> gl = Student('John', '123")
>>> g2 = Student('John', '456")
>>> g3 = gtudent ('John', '123")
(>>> sl == s2
False
>>> gl == g3 .
True == on the objects calls the
>>> __ed__() method of the class
|

|Ln: 19]col: 4
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EXERCISE — ICA-9 prob 1

Write an _ _eq _ method for Point.



Special methods: rich comparison

__eq__() isan example of a rich comparison method:

Comparison operator Method called
== _—eq__()
|= __ne__()
< _ It ()
<= _le_ ()

> _-gt__()
>= _ge__()




len

Special methods: = ;iains

For a class that acts like a collection of items:

You want... You write... And Python calls...

the no. of items in

. len(s s. _len

the object s (s) —len__{
whether the

object s contains | Xins s._contains__ (x)

an item x
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EXERCISE — ICA-9 probs 2-3

Do problems 2 thru 3:
Implement two more methods for the Point class.
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Public and private attributes

* Some languages allow the visibility of attributes to be
— public : visible to all code
or
— private : visible only within the classt

* Our practice is to only use private attributes to enforce
encapsulation

T Our Pythonic convention is that" " at the beginning of
an attribute name denotes that it is "private"

T https://www.python.org/dev/peps/pep-0008/

T It is a signal to the user that they should not modify the
instance variable.
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Class attribute naming conventions

one leading underscore
self._varl

Indicates that the attribute is "not public" and
should only be accessed by the class's internals
(convention; not enforced by Python)

one trailing underscore
selfvarl

Used to avoid conflicts with Python keywords or
functions, e.g., list_, class_, dict_

two leading underscores
self. varl

Invokes name mangling: from outside the class
to enforce private

e.g., self. _varl appears to be at
YourClassName._YourClassName__varl

two leading + trailing
underscores
self. _varl _

Intended only for names that have special
significance for Python, e.g., __init__
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Classic method styles

* more terminology

e getter and setter methods

used to access (getter methods) and modify (setter
methods) a class's private variables

* helper methods
methods that help other methods perform their tasks
not used outside of the class
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Example: setter

class Point:

def __init_ (self, x, y):
self. x=x
self. y=vy

def move_to(self, x, y):
self. x=x
self. y=vy

def get_x(self):
return self._x

def get_y(self):
return self._y

\

setter
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Example: setter

class Point:
def __init_ (self, x, y):
self. x=x
self. y=vy
def move_to(self, x, y):
self. x=x
self. y=vy

def get_x(self): \
return self._x /
def get_y(self):

return self._y

getters
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EXERCISE — ICA-S

Do problem 4.
Don’t leave before the end of lecture!

We will continue with the lecture.



Example: getter

class BookData:
def __init__ (self, author, title, rating):
self. author = author
self._title = title
self. _rating = rating

def get_author(self):

return self._author \

def get rating (self): ————
return self._rating

getters
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Methods vs. functions

* Not associated with any
class or object

— invoked by name alone
* Arguments passed
explicitly

* Operates on data
passed to it

e Associated with a class
or object

— invoked by object.name

* The object for which it
was called is passed
implicitly

e Can operate on data
contained within the

class
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Methods

 Methods sometimes need temporary variables
use variables as in functions
don’t use an instance variable for something temporary
e.g.,

foriin range(len(self._alist)):

* Classes often need helper methods

a method that helps other methods in the class perform a
task

not used outside of the class
define them like any other method

call them within the class using self, e.g.:
o self.helper(...)



Problem (Whiteboard)

a) Write a method called clean_word(). Have it remove the
punctuation of a string in text and return the cleaned version

b) Callitinfrom _init ()

class Word:
def __init_ (self, text):
# store a clean version of the word
# strip off punctuation and convert to lowercase
self. word = text.strip(".!:;,?-").lower()

def __str__(self):
return "Word(" + self._word +")"
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Solution

Write a helper method clean _word() for method for Word.

class Word:
def __init_ (self, text):
self. word = self.clean_word(text)

def clean_word(self, text):
# strip off punctuation and convert to lowercase
return text.strip(".!:;,?-").lower()

def __str__(self):
return "Word(" + self._word +")"
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Summary: Class

* A class is a blueprint, or template, for the code and
data associated with a collection of objects

— the objects are instances of the class

Name
ID

Class

Major

Year

Grades

Instances of the class

Name |Alice Name (Bob Name |Charlie
ID 012 ID 025 ID 101
Major |CS Major |Geosciences Major |Music
Year Freshman Year Junior Year Senior
Grades |... Grades |... Grades |...
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Summary: Instance variables

e A variable associated with an object
specifies some property of that object

each object has its own copy of the :“Da”‘e g“l;e
instance variables yo—
o updating one object's instance variables Year  |Freshman
does not affect other objects Grades |...

* Examples:

* self._ name, self._id, etc. of a
Student object

* self. x and self._y of a Point object
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Summary: Methods

* Methods are pieces of code associated with a class
(and instances of that class, i.e., objects)

they define the behaviors for these objects

* Examples:
getters: get_name(), get_id(), ...
setters: set_name(), set_id(), ...
special methods: __init_ (), __str__(), __eq_ (), ..
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Object-oriented programming

Informally:

"Instead of a bit-grinding processor plundering data
structures, we have a universe of well-behaved
objects that courteously ask each other to carry out
their various desires."

-Dan Ingalls
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