
CSc 120
Introduction to Computer Programming II

02: Basics of Object-Oriented Programming

Programming paradigms

• Procedural programming:
‒ programs are decomposed into procedures (functions)

that manipulate a collection of data structures

• Object-oriented programming
‒ programs are composed of interacting entities (objects)

that encapsulate data and code

2

What is an object?

To human beings, an object is:
"A tangible and/or visible thing; or

(a computer, a chair, a noise)

Something that may be apprehended intellectually; or
(the intersection of two sets, a disagreement)

Something towards which thought or action is directed"
(the procedure of planting a tree)

-Grady Booch

3

Objects
• Object-oriented programming

models properties of, and
interactions between, entities in
the world
• What are some properties of

Angry Birds?
• How do they interact?
• What about physcial locations on

the planet?

4

Objects
• Objects have state and behavior

‒ the state of an object can influence its behavior
‒ the behavior of an object can change its state

• State:
‒ all the properties of an object and the values of those

properties

• Behavior:
how an object acts and reacts, in terms of changes in state
and interaction with other objects

Object: An entity that combines state and behavior
5

EXERCISE (Whiteboard)
Consider an ipod:

• State (properties):
‒ What properties does an ipod have?

• Behavior (operations):
‒ What does an ipod do?
‒ What operations could we define for an ipod?

6

The Class concept

• Class:
A set of objects having the same behavior and underlying
structure

• A class is a template for defining a new type of object

An object is an instance of a class.

7

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1
state:
song =

"1,000,000 Miles"
volume = 17
battery life =

2.5 hrs
behavior:
power on/off
change

station/song
change volume
choose random

song

iPod #2
state:
song = "Letting

You"
volume = 9
battery life =

3.41 hrs
behavior:
power on/off
change

station/song
change volume
choose random

song

iPod #3
state:
song =

"Discipline"
volume = 24
battery life =

1.8 hrs
behavior:
power on/off
change

station/song
change volume
choose random

song

used to create instances of an
iPod

8

Classes

• In Python, that blueprint is expressed by a class
definition

• A class describes the state and behavior of similar
objects

• The attributes of a class represent the state of an
instance

• The methods of a class describe the behavior

9

Example: a set of students at UA

Name ID Major Year Grades
Alice 012 CS Freshman CSC 110: B; CSC 120: A
Bob 025 Physics Junior GEO 215: B; Phys 120: C; GEO 325: A
Charlie 101 Music Senior MUS 210: B; MUS 423: A; CSC 110: B

10

Example: a set of students at UA

Name Alice
ID 012

Major CS
Year Freshman

Grades …

Name Bob
ID 025

Major Physics
Year Junior

Grades …

Name Charlie
ID 101

Major Music
Year Senior

Grades …

Name ID Major Year Grades
Alice 012 CS Freshman CSC 110: B; CSC 120: A
Bob 025 Physics Junior GEO 215: B; Phys 120: C; GEO 325: A
Charlie 101 Music Senior MUS 210: B; MUS 423: A; CSC 110: B

11

Example: a set of students at UA

Name Alice

ID 012

Major CS

Year Freshman

Grades …

Name Bob

ID 025

Major Geosciences

Year Junior

Grades …

Name Charlie

ID 101

Major Music

Year Senior

Grades …

Objects

12

Example: a set of students at UA

Name Alice

ID 012

Major CS

Year Freshman

Grades …

Name Bob

ID 025

Major Geosciences

Year Junior

Grades …

Name Charlie

ID 101

Major Music

Year Senior

Grades …

Attributes
or

Instance variables

13

Example: a set of students at UA

Name Alice

ID 012

Major CS

Year Freshman

Grades …

Name Bob

ID 025

Major Geosciences

Year Junior

Grades …

Name Charlie

ID 101

Major Music

Year Senior

Grades …

Name

ID

Major

Year

Grades

Class

14

Example: a set of students at UA

Name Alice

ID 012

Major CS

Year Freshman

Grades …

Name Bob

ID 025

Major Geosciences

Year Junior

Grades …

Name Charlie

ID 101

Major Music

Year Senior

Grades …

Name

ID

Major

Year

Grades

Class

Instances of the class

15

Objects
• An object consists of:

‒ a state
o given by the values of its attributes or instance variables

‒ a set of behaviors
o given by its methods (e.g., accessing/modifying its instance

variables)

• An object models an entity in a real or virtual world
or system

16

Example: Student object

instance variables

• name
• id
• major
• year
• grades

methods

Name Alice

ID 012

Major CS

Year Freshman

Grades …

methods:
• like functions
• they look at and/or modify the

instance variables of the object

• get_name(), set_name()
• get_id(), set_id()
• get_major(), set_major()
• get_year(), set_year()
• get_grades(), add_grade()
• update_grade()
• compute_GPA()

17

Classes
• A class describes the state and behaviors of a set of

similar objects
‒ state: given by instance variables
‒ behaviors: given by the methods of the class

• The class is the template for making objects

18

Example: Student class

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

…

19

Example: Student class

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

…

The keyword class defines a
class

20

Example: Student class

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

…

indented defs define the
methods of the class

the first non-indented line
ends the class definition

21

Example: Student class

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

…

the first argument of each
method (self) denotes the
object being referred to

by convention this argument is written 'self' ―
this is recommended but not mandatory

22

Example: Student class

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

…

the __init__(…) method is
special:
• called when an object is

created (right after its creation)

• used to initialize the
object's instance variables
• the initial values are

supplied as arguments to
__init__(…)

23

Example: Student class

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

...

instance variables
_name
_id

These refer to attributes of
the object being referred
to, and so are written

self._name
self._id

24

Example: using the Student class

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

…

• creating a new Student
object:
s = Student('Dennis', 543)

• invoking a method:
name = s.get_name()

25

Method invocation

26

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

...
a = Student(“Sally”, 202) # create a Student object
a.get_name() # invoke a method

Think of "self" as an alias to the current object when the method is called.

EXERCISE –ICA-7 prob 1

1. Write a method get_id that returns a Student object's id.

27

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

2. Create a Student object with name 'Harry' and id 342.

Example: A tally counter

Has a name.
Starts a counter at zero.
Increments the counter on a click.

32

Suppose we want to define a class for a Counter:
• Data: ???

‒ what data might we want to associate with a Counter?

• Methods: ???
‒ what methods are required for Counter objects?

• Discuss with your neighbors…

Example: A tally counter

class Counter:
def __init__(self, name):

self._name = name
self._count = 0

def click(self):
self._count += 1

def count(self):
return self._count

33

EXERCISE – ICA-7 prob 2a
Add a reset() method that will set the count to zero.

34

class Counter:
def __init__(self, name):

self._name = name
self._count = 0

def click(self):
self._count += 1

....

EXERCISE – ICA-7 prob 2b
Add a get_reset_count() method that returns the number of
times the counter has been reset.

35

class Counter:
def __init__(self, name):

self._name = name
self._count = 0

def click(self):
self._count += 1

....

Printing out objects

• In general, the Python
system doesn't know how
to print user-defined
objects

‒ inconvenient

• Ideally, each object (or
class) should be able to
determine how it is
printed

36

>>> class Student:
def __init__(self, name, id):

self._name = name
self._id = id

>>> s1 = Student('Pat', '623')
>>>
>>> print(s1)
<__main__.Student object at 0x10238b9e8>
>>>

Printing out objects: __str__()
• __str__() : a special

method for constructing a
string from an object

• called by str() and print()
to convert objects to
strings

37

>>> class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def __str__(self):
return "Student_" + self._name + ":" + str(self._id)

>>> s1 = Student('Pat', '623')
>>> print(s1)
Student_Pat:623
>>>

EXERCISE - Whiteboard
Write a _ _str_ _ method for Counter.

38

class Counter:
def __init__(self, name):

self._name = name
self._count = 0

def click(self):
self._count += 1

....

Solution
Write a _ _str_ _ method for Counter.

39

class Counter:
def __init__(self, name):

self._name = name
self._count = 0

…
def __str__(self):

return " Counter: " + self._name + "-> " + \
str(self._count)

TERMINOLOGY
.

40

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

Terminology
Provide the names of the items pointed to by the arrows.

41

class Student:
def __init__(self, name, id):

self._name = name

self._id = id

def get_name(self):
return self._name

...

? __________________

? __________________

? __________________

? __________________

Terminology
Provide the names of the items pointed to by the arrows.

42

class Student:
def __init__(self, name, id):

self._name = name

self._id = id

def get_name(self):
return self._name

...

-- class definition

-- constructor

-- instance variables or
attributes (or fields!)

-- method definition

Terminology
What happens at the arrow?

43

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

...
a = Student(“Sally”, 202)

? __________________

Terminology
What happens at the arrow?

44

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def get_name(self):
return self._name

...
a = Student(“Sally”, 202)

-- the __init__() constructor
method is called and a Student
object is created

EXERCISE-ICA-8 prob 1
Download the counter-with-str.py file (next to ICA-8)
Do prob 1, a) thru e)

45

class Counter:
def __init__(self, name):

self._name = name
self._count = 0

def click(self):
self._count += 1

....

Recall: __str__()
• __str__() : a special

method for constructing a
string from an object

• called by str() and print()
to produce a string from
an object’s data

46

>>> class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def __str__(self):
return "Student_" + self._name + ":" + str(self._id)

>>> s1 = Student('Pat', 623)
>>> print(s1)
Student_Pat:623
>>>

Special methods: __repr__
• Returns a string

‒ the "official" string representation of the object
‒ must look like a valid Python expression

• __repr__(obj):
‒ should provide a useful description for obj
‒ (it can be the same description as provided in _ _str_ _)

47

Special methods: __repr__
Example: class: Student

attributes: name
id
major

def _ _str_ _(self):

return "Student_" + self._name + ": " + self._id

def _ _repr_ _(self):

return "Student(" + self._name + \
", " + self._id + \

", " + self._major + ")"

__str(self)__
called by str(obj)

__repr(self)__
called by repr(obj)

48

__repr__ vs. __str__
• _ _str_ _ : aims to be readable

‒ string representation of an object
‒ used by the end user, e.g., for printing out the object

• _ _repr_ _ : aims to be unambiguous
‒ string representation of an object
‒ if the class defines _ _repr_ _() but not _ _str()_ _

Python will use repr
‒ very useful when a data structure (ex. a list) contains

user-defined objects
o Python will show the user-defined info on the objects

49

Example: Point class
class Point:

def __init__(self, x, y):
self._x = x
self._y = y

Methods:
‒ what methods might we want to associate with

point objects?
o change a point object's position by a given amount
o compute its distance from the origin (0,0)

51

EXERCISE (Whiteboard)
Write a method translate that changes a Point's location
by a given dx, dy amount.

Write a method distance _from _origin that returns
the distance between a Point and the origin, (0,0). (Need to
import math library to call math.sqrt())
Use the formula:

52

() ()212
2

12 yyxx -+-

Class Point
import math
class Point:

def __init__(self, x, y):
self._x = x
self._y = y

def translate(self, dx, dy):
self._x = self._x + dx
self._y = self._y + dy

def distance_from_origin(self):
return math.sqrt(self._x**2+ self._y **2)

53

class Student : Initializing attributes

More initialization
class Student:

def __init__(self, name, id, major, year):

self._name = name

self._id = id

self._major = major

self._year = year

…

def main():

…

student = Student(name, id, major, year)

Less initialization
class Student:

def __init__(self):

self._name = ''

self._id = -1

…

def main():

…

student = Student()

student.set_name(name)

student.set_id(id)

…

54

class Student : Initializing attributes
More initialization
class Student:

def __init__(self, name, id, major, year):

self._name = name

self._id = id

self._major = major

self._year = year

…

def main():

Less initialization
class Student:

def __init__(self):

self._name = ''

self._id = -1

…

def main():

…

student = Student()

student.set_name(name)

student.set_id(id)

…

55

Typically, it's better to let each class handle its
own internal details.

Avoid letting the outside world know about the internals of the class.

This is encapsulation.

class Student : Initializing attributes
More initialization
class Student:

def __init__(self, name, id, major, year):

self._name = name

self._id = id

self._major = major

self._year = year

…

def main():

Less initialization

class Student:

def __init__(self):

self._name = ''

self._id = ''

def main():

…

student = Student()

student.set_name(name)

student.set_id(id)

…

56

If details have to be handled by the outside world,
it increases the complexity of the program.

It makes it harder to change the implementation
later.

class Student : Initializing attributes
More initialization
class Student:

def __init__(self, name, id, major, year):

self._name = name

self._id = id

self._major = major

self._year = year

…

def main():

...

student = Student(name, id, major, year)

A good class (like a good function)
facilitates thinking abstractly.

Note to C programmers: Don't think
of this as a struct with 4 fields.

The methods are part of the object!

This expression causes an instance
of the class Student to be created.

57

Encapsulation
• encapsulation: Hiding implementation details of a

class

‒ Goal: Minimize how much of the internal state is visible
to the outside world

‒ Allows you to change the implementation
‒ Allows you to think at a higher level of abstraction

o separates external view (behavior) from internal view (state)

‒ Protects the data

58

Benefits of encapsulation
• Provides abstraction between an object and users of the

object.

• Protects an object from unwanted access by code outside the
class.

‒ A bank app forbids a client to change an Account's balance.

• Allows you to change the class implementation.
‒ Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

• Allows you to constrain objects' state.
‒ Example: Only allow Points with non-negative coordinates.

59

EXERCISE – ICA-8 Prob 2
The "+" key on the keyboard is broken. Implement Counter
using another means to keep track of the count.

60

class Counter:
def __init__(self, name):

self._name = name
self._count = ?

def click(self):
self._count = ??

def count(self):
return ???

EXERCISE – ICA-8 Prob (sol)

61

class Counter:
def __init__(self, name):

self._name = name
self._count = []

def click(self):
self._count.append(1)

def count(self):
return len(self.)_count)

Special methods: __eq__
• When are two objects equal?

‒ students (people): the name alone may not be enough
‒ dictionaries, sets: order of elements unimportant
‒ In general: depends on what the object denotes (i.e., its

class)

• Python provides special methods __eq__() and
__ne__() for this

‒ a class can define its own __eq__() and __ne__()
methods to define equality

62

Special methods: __eq__
Example:

class Student:
def __init__(self, name, id):

self._name = name
self._id = id

def __eq__(self, other):
return self._name == other._name \

and self._id == other._id
…

63

Special methods: __eq__
class Student:

…
def __eq__(self, other):

return self._name == other._name \
and self._id == other._id

…
• Is the special method used like this?

s1._ _eq_ _(s2)

• No. We are able to use the “==“ operator
s1 == s2

64

Special methods: __eq__

== on the objects calls the
__eq__() method of the class

65

EXERCISE – ICA-9 prob 1
Write an _ _eq_ _ method for Point.

66

Special methods: rich comparison
__eq__() is an example of a rich comparison method:

Comparison operator Method called

== __eq__()

!= __ne__()

< __lt__()

<= __le__()

> __gt__()

>= __ge__()

67

Special methods:

For a class that acts like a collection of items:

__len__
__contains__

You want… You write… And Python calls…

the no. of items in
the object s

len(s) s.__len__()

whether the
object s contains
an item x

x in s s.__contains__(x)

68

EXERCISE – ICA-9 probs 2-3
Do problems 2 thru 3:
Implement two more methods for the Point class.

69

Public and private attributes

• Some languages allow the visibility of attributes to be
‒ public : visible to all code
or
‒ private : visible only within the class†

• Our practice is to only use private attributes to enforce
encapsulation

† Our Pythonic convention is that "_" at the beginning of
an attribute name denotes that it is "private"

† https://www.python.org/dev/peps/pep-0008/

† It is a signal to the user that they should not modify the
instance variable.

70

https://www.python.org/dev/peps/pep-0008/

Class attribute naming conventions
one leading underscore
self._var1

Indicates that the attribute is "not public" and
should only be accessed by the class's internals
(convention; not enforced by Python)

one trailing underscore
self.var1_

Used to avoid conflicts with Python keywords or
functions, e.g., list_, class_, dict_

two leading underscores
self.__var1

Invokes name mangling: from outside the class
to enforce private
e.g., self.__var1 appears to be at
YourClassName._YourClassName__var1

two leading + trailing
underscores
self.__var1__

Intended only for names that have special
significance for Python, e.g., __init__

71

Classic method styles

• more terminology
• getter and setter methods

‒ used to access (getter methods) and modify (setter
methods) a class's private variables

• helper methods
‒ methods that help other methods perform their tasks
‒ not used outside of the class

72

Example: setter
class Point:

def __init__(self, x, y):
self._x = x
self._y = y

def move_to(self, x, y):
self._x = x
self._y = y

def get_x(self):
return self._x

def get_y(self):
return self._y 73

setter

Example: setter
class Point:

def __init__(self, x, y):
self._x = x
self._y = y

def move_to(self, x, y):
self._x = x
self._y = y

def get_x(self):
return self._x

def get_y(self):
return self._y 74

getters

EXERCISE – ICA-9
Do problem 4.
Don’t leave before the end of lecture!

We will continue with the lecture.

75

Example: getter
class BookData:

def __init__(self, author, title, rating):
self._author = author
self._title = title
self._rating = rating

def get_author(self):
return self._author

def get_rating (self):
return self._rating

.....

76

getters

Methods vs. functions

Functions

• Not associated with any
class or object

‒ invoked by name alone

• Arguments passed
explicitly
• Operates on data

passed to it

Methods

• Associated with a class
or object

‒ invoked by object.name
• The object for which it

was called is passed
implicitly
• Can operate on data

contained within the
class

77

Methods

• Methods sometimes need temporary variables
‒ use variables as in functions
‒ don’t use an instance variable for something temporary
‒ e.g.,

for i in range(len(self._alist)):

• Classes often need helper methods
‒ a method that helps other methods in the class perform a

task
‒ not used outside of the class
‒ define them like any other method
‒ call them within the class using self, e.g.:

o self.helper(…)

78

Problem (Whiteboard)
a) Write a method called clean_word(). Have it remove the

punctuation of a string in text and return the cleaned version
b) Call it in from __init___()

79

class Word:
def __init__(self, text):

store a clean version of the word
strip off punctuation and convert to lowercase
self._word = text.strip(".!:;,?-").lower()

def __str__(self):
return "Word(" + self._word + ")"

Solution
Write a helper method clean_word() for method for Word.

80

class Word:
def __init__(self, text):

self._word = self.clean_word(text)

def clean_word(self, text):
strip off punctuation and convert to lowercase
return text.strip(".!:;,?-").lower()

def __str__(self):
return "Word(" + self._word + ")"

Summary: Class
• A class is a blueprint, or template, for the code and

data associated with a collection of objects
‒ the objects are instances of the class

81

Summary: Instance variables
• A variable associated with an object

‒ specifies some property of that object
‒ each object has its own copy of the

instance variables
o updating one object's instance variables

does not affect other objects

• Examples:
• self._name, self._id, etc. of a

Student object
• self._x and self._y of a Point object

Name Alice

ID 012

Major CS

Year Freshman

Grades …

82

Summary: Methods
• Methods are pieces of code associated with a class

(and instances of that class, i.e., objects)
‒ they define the behaviors for these objects

• Examples:
‒ getters: get_name(), get_id(), …
‒ setters: set_name(), set_id(), …
‒ special methods: __init__(), __str__(), __eq__(), …

83

Object-oriented programming

Informally:
"Instead of a bit-grinding processor plundering data
structures, we have a universe of well-behaved
objects that courteously ask each other to carry out
their various desires."

-Dan Ingalls

84

