
CSc 120
Introduction to Computer Programming II

02: References

Data organization
The stuff under the hood

2

How are data values organized?

3

what exactly does this do?

how exactly is x's value found?
how about that of x[2]?

That's a lot of numbers! How
can they all fit into x[2]?

how does this work?

Data organization in memory
Computer memory is organized as a
sequence of locations

‒ each location is identified by its
address (a number)

‒ a location typically consists of 8 bits
(a "byte")

‒ bytes are often grouped into "words"
(32 or 64 bits)

4

Memory locations address
0

1

2

10000

10001

10002

…

…

…
…

Data organization in memory
A location has only a fixed (limited) number of bits
(32 or 64)

Þ it can only hold a fixed (limited) amount of data

5

the variable x is at a location
Þ fixed (limited) capacity

but this value can be arbitrarily big: e.g., a
million, or a billion, or a trillion elements

How can we make this work?

Object identity and References

6

Intuition behind the solution
• Use a "name" for each value computed

‒ real-world analogy: names that designate entities, e.g.,
"Franklin D. Roosevelt", "the car with AZ plate# MTP-242"

‒ "names" in the computer: a sequence of 0s and 1s
● looks like a number

• When executing a statement like
x = value

‒ create/compute value
‒ store its name in x

• When accessing the value of x: use the name stored to
look up the value

7

Object identity

8

• Every data value in the Python system has a unique
identity number (its "name")

‒ the identity no. of a value v is given by id(v)
‒ id#s correspond to the intuition of the "name" of a value

• When an assignment x = [10,20,30] is executed:
‒ the list [10, 20, 30] is put somewhere in memory
‒ the list’s identity number is stored in x

● this is called a reference to the list

• To find the value of x, we use this reference to locate
and retrieve its value

Code executed Actions within Python system

>>> x = [10, 20, 30] 1. Construct the list [10, 20, 30] somewhere
in memory

2. Store a reference to this list in x. I.e.:
• retrieve the id# of this list
• store this id# in x.

>>> x
[10, 20, 30]

1. Find the id# stored in x
2. Retrieve the value associated with that id#
3. Print out this value

What happens during execution

9

Data structure diagrams

10

Diagramming data structures
• Usually, the exact numerical value of an id() or a

reference is not important
‒ what matters is the refers-to relationship, i.e., what refers to

what

• We can show such relationships graphically:
‒ “x is a reference to value” (equivalently: “x refers to value”)

is shown as

11

x value

Value Actions in the Python system Diagram

a number:
 123

Construct the value 123

123

a string:
 "abc"

1. Construct the string "abc"
2. Use its id# to refer to it "abc"

Data structure diagrams: Values I

12

Value Actions in the Python system Diagram

a list:
 [10, 20, 30]

1. Construct a "container" of
appropriate size (i.e., a set of
locations for holding values)

2. Store the individual list
elements (10, 20, etc.) in
successive slots in this
container

3. Use the container's id# to refer
to the list

Data structure diagrams: Values II

13

10
20
30

container

Nested values
• A Python list is just a container with a single sequence of

references
• For nested lists:

‒ construct the values of the individual elements of the list
‒ construct a container for the outer list
‒ store references to the list elements in the outer container

E.g.: [[10, 20], [30, 40]] :

14

10

30
40

20

An example
Value:
 [[10, 20, 30], [40, 50], 12, [60, 70]]

Diagram:

15

12

10

20

30

40

50

60

70

EXERCISE

16

Draw the data structure diagram for the following:

[[1, 0, 0], [0, 1, 0], [0, 0, 1]]

Data structure diagrams: assignment
Handling an assignment x = value

‒ get the reference to value (compute/create value if
necessary)

‒ store this reference in x

17

Before After

x x

value value

Example

x = y

Data structure diagrams: assignment

18

Before After

x x

value valuey y

Example
x = [10, 20, 30]

Data structure diagrams: assignment

19

Before After

x x
10
20
30

EXERCISE

20

>>> x, y = "ab", 12

>>> z = [x, y]

>>> w = z[1]

← what are the diagrams for x and y?

← what is the diagram for z?

← what is the diagram for w?

True or false:
 >>> x, y = "ab", 12
 >>> z = [x, y]

21

12

x

y

"ab"

z

What is wrong
with this
diagram???

True or false:
 >>> x, y = "ab", 12
 >>> z = [x, y]

22

12

x

y

"ab"

z

References never
point at variables.
References point at
objects.

True or false:
 >>> x, y = "ab", 12
 >>> z = [x, y]

23

12

x

y

"ab"
z

Corrected!

Each assignment
statement copies a
reference.

Now, more than one
variable point to the
same object.

EXERCISE

24

x

10

20

30

y

x y

10

20

30

10

20

30

What is the difference
between these two
diagrams?

Write some code
which will create
each one.

EXERCISE

25

x = [10,20,30]
y = x

x = [10,20,30]
y = [10,20,30]

x

10

20

30

y

x y

10

20

30

10

20

30

x = [10, 20, 30]
y = [x[2]+1, x[1]+2, x[0]+3, x[-1]+4]

More examples

26

Before After

x yx

10

20

30

10

20

30

31

22

13

34

 for i in range(5):

EXERCISE

27

What lines of code here will result in the diagram above?

x
0

11

22

33

44

EXERCISE

28

>>> x = [10, 20, 30]
>>> y = [“ab”, “cd”]
>>> z = [x, y]

← what is the diagram for z?

>>> x = [10, 20, 30] # a list containing 3 values
>>> y = [“ab”, “cd”] # a list containing 2 values
>>> z = [x, y] # a list containing 2 values

SOLUTION (1 of 3)

29

x
a list (container)
with 3 values

10

20

30

y

>>> x = [10, 20, 30] # a list containing 3 values
>>> y = [“ab”, “cd”] # a list containing 2 values
>>> z = [x, y] # a list containing 2 values

SOLUTION (2 of 3)

30

x

a list (container)
with 2 values

a list (container)
with 3 values

10

20

30

“ab”

“cd”

y

>>> x = [10, 20, 30] # a list containing 3 values
>>> y = [“ab”, “cd”] # a list containing 2 values
>>> z = [x, y] # a list containing 2 values

SOLUTION (3 of 3)

31

x

a list (container)
with 2 values

a list (container)
with 3 values

z

10

20

30

“ab”

“cd”

EXERCISE

32

>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]

>>> w = [z[0][0], z[1][1]]
← what is the diagram for z?

← what is the diagram for w?

SOLUTION (1 of 4)

33

x

>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [z[0][0], z[1][1]]

10

20

30

y

SOLUTION (2 of 4)

34

>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [z[0][0], z[1][1]]

x 10

20

30

“abc”

12

“def”

23

SOLUTION (3 of 4)

35

z

>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [z[0][0], z[1][1]]

y

x 10

20

30

“abc”

12

“def”

23

SOLUTION (4 of 4)

36

>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [z[0][0], z[1][1]]

w

z y

x 10

20

30

“abc”

12

“def”

23

“abc”

20

SOLUTION

37

>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [z[0][0], z[1][1]]

w

z y

x 10

20

30

“abc”

12

“def”

23

“abc”

20

Wait…

Doesn’t assignment
COPY references?

This picture is
simplified. Can we
make it more
precise?

SOLUTION

38

>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [z[0][0], z[1][1]]

z y

x

“abc”

12

“def”

23

10

20

30

w

EXERCISE

39

What code will produce the following diagram?

x y z

w

40

50

60

10

20

30

70

80

90

Function calls

40

Arguments and return values
• At a function call f(arg1, …, argn) the called function f is

passed references to the values of arg1, …, argn

• When a called function returns val to the caller, what is
returned is a reference to val

41

EXERCISE

42

def myfun(v):
 return [v[0]]

x = myfun([10, 20])

← what is the diagram for v?

← what is the diagram for x?

EXERCISE

43

Problem:
Write a function myfun1() that will return a value whose diagram is:

"ab"

"cd"

"ef"
return value

EXERCISE

44

Problem:
Write a function myfun2() that will return a value whose diagram is:

return value

10 20

30

Comparing values

45

Objects and their values

46

>>> x = [10, 20, 30]
compute RHS value, then store the reference into LHS

x 10
20
30

Objects and their values

47

>>> x = [10, 20, 30]
compute RHS value, then store the reference into LHS

x 10
20
30

>>> y = [10, 20, 30]
compute RHS value, then store the reference into LHS

y 10
20
30

Questions:

• Is id(x) == id(y) ? What do you think? Why?
• Is x == y ? What do you think? Why?

Objects and their values

48

>>> x = [10, 20, 30]
compute RHS value, then store the reference into LHS

x 10
20
30

>>> y = [10, 20, 30]
compute RHS value, then store the reference into LHS

y 10
20
30

Objects and their values

• x and y refer to two lists that:
‒ have the same value

● same length, same sequence of list elements
‒ but are different objects

● they live at different memory locations
● their id#s are different

49

>>> x = [10, 20, 30]
compute RHS value, then store the reference into LHS

>>> y = [10, 20, 30]
compute RHS value, then store the reference into LHS

x 10
20
30

y 10
20
30

 >>> x = [10, 20, 30]
 >>> y = [10, 20, 30]
 >>> z = x

is vs. ==

50

x

z

y
>>> x is z
True
>>> x is y
False
>>> y == z
True

a is b ≡ "do a and b refer to
the same object?"

a == b ≡ "do a and b have the
same value (even if they may
refer to different objects)?"

10
20
30

10
20
30

is vs. ==
• If a is b then a == b

‒ however, a == b does not necessarily mean a is b

• In data structure diagrams:
‒ a is b means: a and b point to the same thing
‒ a == b means:

51

the diagrams for a and b would match up if
they were placed one on top of the other

True or False:
• x is y

EXERCISE

52

x

y
"ef"

"ab"

"cd"

10
20

10
20

True or False:
• x is y
• x[2] is y[2]

EXERCISE

53

x

y
"ef"

"ab"

"cd"

10
20

10
20

True or False:
• x is y
• x[2] is y[2]
• x[2][0] is y[2][0]

EXERCISE

54

x

y
"ef"

"ab"

"cd"

10
20

10
20

True or False:
• x is y
• x[2] is y[2]
• x[2][0] is y[2][0]
• x[2] == y[2]

EXERCISE

55

x

y
"ef"

"ab"

"cd"

10
20

10
20

True or False:
• x is y
• x[2] is y[2]
• x[2][0] is y[2][0]
• x[2] == y[2]
• x[0] == y[0]

EXERCISE

56

x

y
"ef"

"ab"

"cd"

10
20

10
20

True or False:
• x is y
• x[2] is y[2]
• x[2][0] is y[2][0]
• x[2] == y[2]
• x[0] == y[0]
• x[0] == y[1]

EXERCISE

57

x

y
"ef"

"ab"

"cd"

10
20

10
20

True or False:
• x is y
• x[2] is y[2]
• x[2][0] is y[2][0]
• x[2] == y[2]
• x[0] == y[0]
• x[0] == y[1]
• x == y

EXERCISE

58

x

y
"ef"

"ab"

"cd"

10
20

10
20

Aliasing

59

Some simple Python code
>>> x = [10, 20, 30, 40]
>>> x
[10, 20, 30, 40]
>>> y = x
>>> y
[10, 20, 30, 40]
>>> x[1] = 999
>>> y
[10, 999, 30, 40]

60

>>> x = [10, 20, 30, 40]
>>> x
[10, 20, 30, 40]
>>> y = x
>>> y
[10, 20, 30, 40]
>>> x[1] = 999
>>> y
[10, 999, 30, 40]

Some simple Python code

61

x 10

20

30

40

>>> x = [10, 20, 30, 40]
>>> x
[10, 20, 30, 40]
>>> y = x
>>> y
[10, 20, 30, 40]
>>> x[1] = 999
>>> y
[10, 999, 30, 40]

Some simple Python code

62

x

y

10

20

30

40

>>> x = [10, 20, 30, 40]
>>> x
[10, 20, 30, 40]
>>> y = x
>>> y
[10, 20, 30, 40]
>>> x[1] = 999
>>> y
[10, 999, 30, 40]

Some simple Python code

63

x

y

10

999

30

40

>>> x = [10, 20, 30, 40]
>>> x
[10, 20, 30, 40]
>>> y = x
>>> y
[10, 20, 30, 40]
>>> x[1] = 999
>>> y
[10, 999, 30, 40]

Some simple Python code

64

y refers to the same
data structure as x

x

y

10

999

30

40

Aliasing
Aliasing refers to the situation where there are multiple
different references to (names for) the same value

‒ the different references are said to be aliases of each other

65

x

y

aliases aliases

10

20

30

40

Aliasing

x = [10, 20, 30]
y = x

No aliasing

x = [10, 20, 30]
y = [10, 20, 30]

66

Creating aliases

x y

10
20
30

Aliasing occurs when we create multiple copies of a
reference to some value

x y

10
20
30

10
20
30

EXERCISE

67

x = [10, 20, 30]
y = [x, x]

← what is the diagram for y?

based on the diagram, what can you say about aliasing in y?

EXERCISE

68

>>> def foo(w):
return w[0]

>>> x = [[1, 2, 3], [4, 5, 6]]
>>> y = foo(x)

>>> y[1] = 999
>>> x

← ① what is the diagram for x and y?

← ② what do you think will be printed out?

SOLUTION

69

x

1
2
3

4
5
6

y

The diagram at ①

x

1
999

3

4
5
6

y

The diagram at ②: the value
printed is: [[1,999,3], [4,5,6]]

Detecting aliasing
If:

‒ you change the value of one variable (or data structure);
and

‒ the value of some other variable (or data structure)
changes in the same way

this is likely to be due to aliasing

70

Example
>>> def foo(w):

return w[0]

>>> x = [[1,2,3], [4,5,6]]
>>> y = foo(x)
>>> y[1] = 55
>>> x
[[1, 55, 3], [4, 5, 6]]

71

EXERCISE

72

Problem:
Write a function myfun2(x, y) that will return a value whose
diagram is shown below. You can assume that both x and y are lists
of length 2.

x y

def myfun2(x, y):
 …

 val = …
 # diagram for val here
 return val

val

EXERCISE

73

Problem:
Write a function myfun3(x, y) that will return a value whose
diagram is shown below. You can assume that both x and y are lists
of length 2.

def myfun3(x, y):
 …

 val = …
 # diagram for val here
 return val

x y

val

EXERCISE

74

Problem:
Write a function myfun4(x) that will return a value whose diagram
is shown below.

x

def myfun4(x):
 …

 val = …
 # diagram for val here
 return val

valueval

Define a function chain(n), where n ≥ 0 is an integer, that returns a
value whose diagram looks like this:

Examples:

0 2 5

0

EXERCISE

75

0 1 2 n–1
n

. . .
return_value

n individual lists

[] 1
2

0 1 2 3 4
5

value of n

return
value

	Slide 1
	Data organization The stuff under the hood
	How are data values organized?
	Data organization in memory
	Data organization in memory
	Object identity and References
	Intuition behind the solution
	Object identity
	What happens during execution
	Data structure diagrams
	Diagramming data structures
	Data structure diagrams: Values I
	Data structure diagrams: Values II
	Nested values
	An example
	EXERCISE
	Data structure diagrams: assignment
	Data structure diagrams: assignment
	Data structure diagrams: assignment
	EXERCISE
	EXERCISE
	Slide 22
	Slide 23
	EXERCISE
	Slide 25
	More examples
	EXERCISE
	EXERCISE
	SOLUTION (1 of 3)
	SOLUTION (2 of 3)
	SOLUTION (3 of 3)
	EXERCISE_clipboard0
	SOLUTION (1 of 4)
	SOLUTION (2 of 4)
	SOLUTION (3 of 4)
	SOLUTION (4 of 4)
	Slide 37
	Slide 38
	EXERCISE
	Function calls
	Arguments and return values
	EXERCISE
	EXERCISE
	EXERCISE
	Comparing values
	Objects and their values
	Objects and their values
	Objects and their values
	Objects and their values
	is vs. ==
	is vs. ==
	EXERCISE
	EXERCISE
	EXERCISE
	EXERCISE
	EXERCISE
	EXERCISE
	EXERCISE
	Aliasing
	Some simple Python code
	Some simple Python code
	Some simple Python code
	Some simple Python code
	Some simple Python code
	Aliasing
	Creating aliases
	EXERCISE
	EXERCISE
	SOLUTION
	Detecting aliasing
	Example
	EXERCISE
	EXERCISE
	EXERCISE
	EXERCISE

