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Data organization
The stuff under the hood
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How are data values organized?
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what exactly does this do?

how exactly is x's value found?
how about that of x[2]?

That's a lot of numbers!  How 
can they all fit into x[2]?

how does this work?



Data organization in memory
Computer memory is organized as a 
sequence of locations

‒ each location is identified by its 
address (a number)

‒ a location typically consists of 8 bits 
(a "byte")

‒ bytes are often grouped into "words" 
(32 or 64 bits)
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Memory locations address
0

1

2

10000

10001

10002

…

…

…
…



Data organization in memory
A location has only a fixed (limited) number of bits         
(32 or 64)

Þ  it can only hold a fixed (limited) amount of data

5

the variable x is at a location
Þ fixed (limited) capacity 

but this value can be arbitrarily big: e.g., a 
million, or a billion, or a trillion elements

How can we make this work?



Object identity and References
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Intuition behind the solution
• Use a "name" for each value computed

‒ real-world analogy: names that designate entities, e.g., 
"Franklin D. Roosevelt", "the car with AZ plate# MTP-242"

‒ "names" in the computer: a sequence of 0s and 1s
● looks like a number

• When executing a statement like
x = value

‒ create/compute value
‒ store its name in x

• When accessing the value of x: use the name stored to 
look up the value

7



Object identity
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• Every data value in the Python system has a unique 
identity number  ( its "name")

‒ the identity no. of a value v is given by id(v)
‒ id#s correspond to the intuition of the "name" of a value

• When an assignment x = [10,20,30] is executed:
‒ the list [10, 20, 30] is put somewhere in memory 
‒ the list’s identity number is stored in x

● this is called a reference to the list

• To find the value of x, we use this reference to locate 
and retrieve its value



Code executed Actions within Python system

>>> x = [10, 20, 30] 1. Construct the list [10, 20, 30] somewhere 
in memory

2. Store a reference to this list in x.  I.e.:
• retrieve the id# of this list
• store this id# in x.  

>>> x
[10, 20, 30]

1. Find the id# stored in x
2. Retrieve the value associated with that id#
3. Print out this value

What happens during execution
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Data structure diagrams
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Diagramming data structures
• Usually, the exact numerical value of an id() or a 

reference is not important
‒ what matters is the refers-to relationship, i.e., what refers to 

what

• We can show such relationships graphically:
‒ “x is a reference to value”  (equivalently: “x refers to value”) 

is shown as    
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x value



Value Actions in the Python system Diagram

a number: 
     123

Construct the value 123

123

a string: 
     "abc"

1. Construct the string "abc"
2. Use its id# to refer to it "abc"

Data structure diagrams: Values I
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Value Actions in the Python system Diagram

a list: 
  [10, 20, 30]

1. Construct a "container" of 
appropriate size (i.e., a set of 
locations for holding values)

2. Store the individual list 
elements (10, 20, etc.) in 
successive slots in this 
container

3. Use the container's id# to refer 
to the list

Data structure diagrams: Values II
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10
20
30

container



Nested values
• A Python list is just a container with a single sequence of 

references
• For nested lists:

‒ construct the values of the individual elements of the list
‒ construct a container for the outer list
‒ store references to the list elements in the outer container

E.g.: [ [10, 20], [30, 40] ] :
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10

30
40

20



An example
Value:
          [ [10, 20, 30], [40, 50], 12, [60, 70] ]

Diagram:
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12

10

20

30

40

50

60

70



EXERCISE
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Draw the data structure diagram for the following:

[ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]



Data structure diagrams: assignment
Handling an assignment   x = value

‒ get the reference to value (compute/create value if 
necessary)

‒ store this reference in x
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Before After

x x

value value



Example

x = y

Data structure diagrams: assignment
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Before After

x x

value valuey y



Example
x = [10, 20, 30]

Data structure diagrams: assignment
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Before After

x x
10
20
30



EXERCISE

20

>>> x, y = "ab", 12

>>> z = [x, y]

>>> w = z[1]

← what are the diagrams for x and y?

← what is the diagram for z?

← what is the diagram for w?



True or false:
          >>> x, y = "ab", 12
          >>> z = [x, y]
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12

x

y

"ab"

z

What is wrong 
with this 
diagram???



True or false:
          >>> x, y = "ab", 12
          >>> z = [x, y]

22

12

x

y

"ab"

z

References never 
point at variables.
References point at 
objects.



True or false:
          >>> x, y = "ab", 12
          >>> z = [x, y]

23

12

x

y

"ab"
z

Corrected!

Each assignment 
statement copies a 
reference.

Now, more than one 
variable point to the 
same object.



EXERCISE
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x

10

20

30

y

x y

10

20

30

10

20

30

What is the difference
between these two
diagrams?

Write some code
which will create
each one.



EXERCISE
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x = [10,20,30]
y = x

x = [10,20,30]
y = [10,20,30]

x

10

20

30

y

x y

10

20

30

10

20

30



x = [10, 20, 30]
y = [ x[2]+1, x[1]+2, x[0]+3, x[-1]+4 ]

More examples
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Before After

x yx

10

20

30

10

20

30

31

22

13

34



     for i in range(5):

EXERCISE
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What lines of code here will result in the diagram above?

x
0

11

22

33

44



EXERCISE
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>>> x = [10, 20, 30]
>>> y = [“ab”, “cd”]
>>> z = [x, y]

← what is the diagram for z?



>>> x = [10, 20, 30]      # a list containing 3 values
>>> y = [“ab”, “cd”]      # a list containing 2 values
>>> z = [x, y]                 # a list containing 2 values

SOLUTION (1 of 3)
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x
a list (container) 
with 3 values

10

20

30



y

>>> x = [10, 20, 30]      # a list containing 3 values
>>> y = [“ab”, “cd”]      # a list containing 2 values
>>> z = [x, y]                 # a list containing 2 values

SOLUTION (2 of 3)

30

x

a list (container) 
with 2 values

a list (container) 
with 3 values

10

20

30

“ab”

“cd”



y

>>> x = [10, 20, 30]      # a list containing 3 values
>>> y = [“ab”, “cd”]      # a list containing 2 values
>>> z = [x, y]                 # a list containing 2 values

SOLUTION (3 of 3)
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x

a list (container) 
with 2 values

a list (container) 
with 3 values

z

10

20

30

“ab”

“cd”



EXERCISE
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>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]

>>> w = [ z[0][0], z[1][1] ]
← what is the diagram for z?

← what is the diagram for w?



SOLUTION (1 of 4)
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x

>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [ z[0][0], z[1][1] ]

10

20

30



y

SOLUTION (2 of 4)
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>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [ z[0][0], z[1][1] ]

x 10

20

30

“abc”

12

“def”

23



SOLUTION (3 of 4)
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z

>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [ z[0][0], z[1][1] ]

y

x 10

20

30

“abc”

12

“def”

23



SOLUTION (4 of 4)
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>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [ z[0][0], z[1][1] ]

w

z y

x 10

20

30

“abc”

12

“def”

23

“abc”

20



SOLUTION
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>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [ z[0][0], z[1][1] ]

w

z y

x 10

20

30

“abc”

12

“def”

23

“abc”

20

Wait…

Doesn’t assignment 
COPY references?

This picture is 
simplified.  Can we 
make it more 
precise?



SOLUTION
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>>> x = [10, 20, 30]
>>> y = ["abc", 12, "def", 23]
>>> z = [y, x]
>>> w = [ z[0][0], z[1][1] ]

z y

x

“abc”

12

“def”

23

10

20

30

w



EXERCISE
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What code will produce the following diagram?

x y z

w

40

50

60

10

20

30

70

80

90



Function calls

40



Arguments and return values
• At a function call f(arg1, …, argn) the called function f is 

passed references to the values of arg1, …, argn

• When a called function returns val to the caller, what is 
returned is a reference to val

41



EXERCISE

42

def myfun(v):
      return [ v[0] ]

x = myfun( [10, 20] )

← what is the diagram for v?

← what is the diagram for x?



EXERCISE

43

Problem: 
Write a function myfun1() that will return a value whose diagram is:

"ab"

"cd"

"ef"
return value



EXERCISE
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Problem: 
Write a function myfun2() that will return a value whose diagram is:

return value

10 20

30



Comparing values
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Objects and their values
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>>> x = [10, 20, 30]
compute RHS value, then store the reference into LHS

x 10
20
30



Objects and their values
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>>> x = [10, 20, 30]
compute RHS value, then store the reference into LHS

x 10
20
30

>>> y = [10, 20, 30]
compute RHS value, then store the reference into LHS

y 10
20
30



Questions:

• Is  id(x)  ==  id(y) ?      What do you think?  Why?
• Is  x == y ?      What do you think?  Why?

Objects and their values
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>>> x = [10, 20, 30]
compute RHS value, then store the reference into LHS

x 10
20
30

>>> y = [10, 20, 30]
compute RHS value, then store the reference into LHS

y 10
20
30



Objects and their values

• x and y refer to two lists that:
‒ have the same value 

● same length, same sequence of list elements
‒ but are different objects

● they live at different memory locations
● their id#s are different

49

>>> x = [10, 20, 30]
compute RHS value, then store the reference into LHS

>>> y = [10, 20, 30]
compute RHS value, then store the reference into LHS

x 10
20
30

y 10
20
30



    >>> x = [10, 20, 30]
    >>> y = [10, 20, 30]
    >>> z = x

is  vs.  ==
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x

z

y
>>> x  is  z
True
>>> x is y
False
>>> y == z
True

a  is  b  ≡  "do a and b refer to 
the same object?"

a  ==  b  ≡  "do a and b have the 
same value (even if they may 
refer to different objects)?"

10
20
30

10
20
30



is vs. ==
• If  a is b  then  a == b

‒ however, a == b  does not necessarily mean  a is b

• In data structure diagrams:
‒ a is b  means:  a and b point to the same thing
‒ a == b  means: 
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the diagrams for a and b would match up if 
they were placed one on top of the other



True or False:
• x is y

EXERCISE
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x

y
"ef"

"ab"

"cd"

10
20

10
20



True or False:
• x is y
• x[2] is y[2]

EXERCISE
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x

y
"ef"

"ab"

"cd"

10
20

10
20



True or False:
• x is y
• x[2] is y[2]
• x[2][0]  is  y[2][0]

EXERCISE
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x

y
"ef"

"ab"

"cd"

10
20

10
20



True or False:
• x is y
• x[2] is y[2]
• x[2][0]  is  y[2][0]
• x[2] == y[2]

EXERCISE
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x

y
"ef"

"ab"

"cd"

10
20

10
20



True or False:
• x is y
• x[2] is y[2]
• x[2][0]  is  y[2][0]
• x[2] == y[2]
• x[0] == y[0]

EXERCISE
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x

y
"ef"

"ab"

"cd"

10
20

10
20



True or False:
• x is y
• x[2] is y[2]
• x[2][0]  is  y[2][0]
• x[2] == y[2]
• x[0] == y[0]
• x[0] == y[1]

EXERCISE
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x

y
"ef"

"ab"

"cd"

10
20

10
20



True or False:
• x is y
• x[2] is y[2]
• x[2][0]  is  y[2][0]
• x[2] == y[2]
• x[0] == y[0]
• x[0] == y[1]
• x == y

EXERCISE
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x

y
"ef"

"ab"

"cd"

10
20

10
20



Aliasing

59



Some simple Python code
>>> x = [10, 20, 30, 40]
>>> x
[10, 20, 30, 40]
>>> y = x
>>> y
[10, 20, 30, 40]
>>> x[1] = 999
>>> y
[10, 999, 30, 40]
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>>> x = [10, 20, 30, 40]
>>> x
[10, 20, 30, 40]
>>> y = x
>>> y
[10, 20, 30, 40]
>>> x[1] = 999
>>> y
[10, 999, 30, 40]

Some simple Python code
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x 10

20

30

40



>>> x = [10, 20, 30, 40]
>>> x
[10, 20, 30, 40]
>>> y = x
>>> y
[10, 20, 30, 40]
>>> x[1] = 999
>>> y
[10, 999, 30, 40]

Some simple Python code
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x

y

10

20

30

40



>>> x = [10, 20, 30, 40]
>>> x
[10, 20, 30, 40]
>>> y = x
>>> y
[10, 20, 30, 40]
>>> x[1] = 999
>>> y
[10, 999, 30, 40]

Some simple Python code
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x

y

10

999

30

40



>>> x = [10, 20, 30, 40]
>>> x
[10, 20, 30, 40]
>>> y = x
>>> y
[10, 20, 30, 40]
>>> x[1] = 999
>>> y
[10, 999, 30, 40]

Some simple Python code
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y refers to the same 
data structure as x

x

y

10

999

30

40



Aliasing
Aliasing refers to the situation where there are multiple 
different references to ( names for) the same value

‒ the different references are said to be aliases of each other
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x

y

aliases aliases

10

20

30

40



Aliasing

x = [10, 20, 30]
y = x

No aliasing

x = [10, 20, 30]
y = [10, 20, 30]

66

Creating aliases

x y

10
20
30

Aliasing occurs when we create multiple copies of a 
reference to some value

x y

10
20
30

10
20
30



EXERCISE
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x = [10, 20, 30]
y = [x, x]

← what is the diagram for y?

based on the diagram, what can you say about aliasing in y?



EXERCISE
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>>> def foo(w):
return w[0]

>>> x = [[1, 2, 3], [4, 5, 6]]
>>> y = foo(x)

>>> y[1] = 999
>>> x

← ① what is the diagram for x and y?

← ② what do you think will be printed out?



SOLUTION
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x

1
2
3

4
5
6

y

The diagram at ① 

x

1
999

3

4
5
6

y

The diagram at ②: the value 
printed is: [[1,999,3], [4,5,6]] 



Detecting aliasing
If:

‒ you change the value of one variable (or data structure); 
and

‒ the value of some other variable (or data structure) 
changes in the same way

this is likely to be due to aliasing

70



Example
>>> def foo(w):

return w[0]

>>> x = [[1,2,3], [4,5,6]]
>>> y = foo(x)
>>> y[1] = 55
>>> x
[[1, 55, 3], [4, 5, 6]]
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EXERCISE
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Problem: 
Write a function myfun2(x, y) that will return a value whose 
diagram is shown below.  You can assume that both x and y are lists 
of length 2.

x y

def myfun2(x, y):
      …

      val = …
      # diagram for val here
      return val

val



EXERCISE
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Problem: 
Write a function myfun3(x, y) that will return a value whose 
diagram is shown below.  You can assume that both x and y are lists 
of length 2.

def myfun3(x, y):
      …

      val = …
      # diagram for val here
      return val

x y

val



EXERCISE
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Problem: 
Write a function myfun4(x) that will return a value whose diagram 
is shown below.  

x

def myfun4(x):
      …

      val = …
      # diagram for val here
      return val

valueval



Define a function chain(n), where n ≥ 0 is an integer, that returns a 
value whose diagram looks like this:

Examples:

0 2 5

0

EXERCISE

75

0 1 2 n–1
n

. . .
return_value

n individual lists

[] 1
2

0 1 2 3 4
5

value of n

return
value
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