CSc 120

Introduction to Computer Programming |

05: Abstract Data Types
Stacks and Queues

Abstract Data Types

Abstract Data Types

An abstract data type (ADT) describes a set of data
values and associated operations that are specified
independent of any particular implementation.

An ADT is a logical description of how we view the
data and the operations allowed on that data.

o describes what the data represents
o not how is the data represented

The data is encapsulated.

Abstract Data Types

Because the data is encapsulated we can change the
underlying implementation without affecting the
logical way the ADT behaves.

o the logical description remains the same
o the operations remain the same (abstractly)

Example:

o lists
« Python built-in lists
 linked lists

Abstract Data Types

Consider the ADT definition of a list.

Lists:

o logical description

o linear ordering of elements
o elements can be inserted or deleted from any location

o operations
o len, indexing, slicing, in, concatenation, insert, delete, ...

linear data structures

Linear data structures

A linear data structure is a collection of objects with
a straight-line ordering among them
— each object in the collection has a position

— for each object in the collection, there is a notion of the
object before it or after it

00000

Data structures we've seen

e Python lists * Dictionaries™
* Linked lists * Sets

*Prior to Python v7

Today's topic

e Python lists e Dictionaries™
e Linked lists e Sets
e Stacks 7

* Queues -
* Dequeues _ Z Key property: the way in which

objects are added to, and
removed from, the collection

*Prior to Python v7

stacks

EXERCISE-whiteboard

* Think of a stack of plates in a cafeteria.

* What are some of the logical operations that
you would specify for a stack of plates?

* Describe three operations.

11

The Stack ADT

A stack is a linear data structure where objects are
inserted or removed only at one end

— all insertions and deletions happen at one particular end
of the data structure

— this end is called the top of the stack
— the other end is called the bottom of the stack

00000

13

insertions and deletions
happen at one end

12

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

5 17 33 9 43

stack

wp NOne

stack

bottom None

13

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

5/17 33 9 43

stack

top
stack
bottom 5

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

170 33 9 43

stack

top \

stack
bottom

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

33) 9 43

stack _—

top

stack
bottom

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

9

43

9
stack/ 33

top
17

stack — 5
bottom

17

Stacks: insertion of values

Insertion of a sequence
of values into a stack:

43
43
9
stack 33
top
17
tack
N I

Stacks: insertion of values

5 17 33 9 43

>
order in which values were inserted

stack
top

stack
bottom

43

33

17

19

Stacks: removal of values

5 17 33 9 43

>

order in which values were inserted

Removing values from
the stack:

stack
top

stack
bottom

43

33

17

20

Stacks: removal of values

5 17 33 9 43

>
order in which values were inserted

Removing values from

the stack: 9
stack/ 33
43

top
17

stack — 5
bottom

21

Stacks: removal of values

5 17 33 9 43

>
order in which values were inserted

Removing values from
the stack:

43 9 stack/V

33

top

17

stack

bottom

22

Stacks: removal of values

5 17 33 9 43

>
order in which values were inserted

Removing values from
the stack:

43 9 33

stack

top \

17

stack

bottom

23

Stacks: removal of values

5 17 33 9 43

>
order in which values were inserted

Removing values from
the stack:

stack

stack

>

bottom

24

Stacks: removal of values

5 17 33 9 43

>
order in which values were inserted

Removing values from
the stack:

stack

43 9 33 17 5 wop NONE

stack

bottom None

25

Stacks: removal of values

5 17 33 9 43

>
order in which values were inserted

Removing values from
the stack:

43 9 33 17 5

>
order in which values were removed

26

Stacks: LIFO property

5 17 33 9 43

>
order in which values were inserted

values are removed in
Removing values from - reverse order from the

the stack: order of insertion

43 9 33 17,5 "LIFO order"

order in which values were removed _| Last in, First out

27

The Stack ADT

A stack is a linear data structure where objects are
inserted or removed only at one end

— all insertions and deletions happen at one particular end
of the data structure

— this end is called the top of the stack
— the other end is called the bottom of the stack

Operations
— insert at the top (called push)
— delete from the top (called pop)

Methods for a Stack class

e Stack() : creates a new empty stack

* push(item) : adds item to the top of the stack
— returns nothing
— modifies the stack

e pop() : removes the top item from the stack
— returns the removed item
— modifies the stack

* is_empty() : checks whether the stack is empty
— returns a Boolean

29

EXERCISE

>>> s = Stack()
>>> s.push(4)
>>> s.push(17)

>>> s.push(5)
>>> X = s.pop)

>>>y =s.pop()
& what does the stack s look like here?
what are the values of x and y?

30

>>> s = Stack()

>>> 5. puUs
>>> 5. puUs

>>> 5. puUs

n(4)
N(17)

N(5)

>>> X = s.pop)

>>>y =s.pop()
>>> s.push(x)

>>> s.push(y)

EXERCISE

& what does the stack s look like here?

31

EXERCISE-ICA-16, prob 2

Implement the Stack class below. Use a Python list to hold the data.

Note: given a list alist, the Python method alist.pop() removes the last
element of the list.

class Stack:
create a Stack
def __init__ (self):
self. items="7?

adds item to the "top"

def push(self, item):
?

removes the last item from the Stack
def pop(self):
?

32

Implementing a Stack class

class Stack:
the top of the stack is the last item in the list
def _init__ (self):

self. _items =]
def push(self, item):

self._items.append(item)
removes and returns

def pop(self): / the last item in a list

return self._items.pop()

33

EXERCISE- Whiteboard

>>> g1 = Stack()
>>> s1.push(4)

>>>s1.push(17)
>>> g2 = Stack()

>>>S2.puUs
>>>S2.puUs
>>>sl.pus

>>>sl.pus

n(s1.pop())
n(s1.pop())
n(s2.pop())

n(s2.pop())
& what does the stack sl look like here?

34

stacks: applications

An application: balancing parens

IDLE (the Python shell) matches up left and right
parens (), brackets [], and braces { }

How does it figure out how far back to highlight?

36

An application: balancing parens

Basic idea: Match each | with corresponding |
— similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

Example: [1,2,[3,[4],5,[7]]]

Stack (empty)

37

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

Example: 61,2,[3,[4],5,[7]]] [| € top
\\\\\\\\\\‘____’/////////////////’;? Stack

push

38

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

[< top
Example: [1,2,([B,[4],5,[7]]] [| € top
Stack

push

39

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— Idea:
o maintain a stack
o on seeing '[' : push the symbol

o on seeing ']’ : pop the matching symbol [< top
[< top
Example: [1,2,[3,[41,5,[71]]] [
Stack

push

40

An application: balancing parens

Basic idea: Match each | with corresponding |

—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

Example: [1,2,[3,[4(55,[7]]]

matches:
pop

[< top

41

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

[< top
Example: [1,2,[3,[4(1)5,[711] [

Stack

42

An application: balancing parens

Basic idea: Match each | with corresponding |

—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

Example: [1,2,[3,[4],5,

< top

43

An application: balancing parens

Basic idea: Match each | with corresponding |

—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

Example: [1,2,[3,[4], 5,[725]]

Stack

< top

44

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— Idea:
o maintain a stack
o on seeing '[' : push the symbol

o on seeing ']’ : pop the matching symbol [< top
[
Example: [1,2,[3,[4],5,[761] :
matches: Stack

pop

45

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

[< top
Example: [1,2,[3,[41,5,[7(]]] [

Stack

46

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

[< top
Example: [1,2,[3,[4],5,[7]]&/ [

matches: Stack
pop

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

Example: [1,2,[3,[4],5,[7]6] [| € top

Stack

48

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

J
Example: [1,2,[3,[4],5,[7]]@) [| € top
matches: Stack

pop

49

An application: balancing parens

Basic idea: Match each | with corresponding |
— similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol
Example: [1,2,[3,[4],5,[7]]]

Stack (empty)

Note: the stack should be empty when the input
has been processed

50

An application: balancing parens

Basic idea: Match each | with corresponding |
—similarly for (...) and { ... } pairs

— |dea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']’ : pop the matching symbol

Example: [1,2,[3,[41],5,[7]1]]

N

=l & top
S~ - - Stack

Elaboration: Have each stack element keep
track of the position of its |

51

EXERCISE-ICA-17/-p.1

Given the Stack class, write a
function reverse (s) that

class Stack: reverses a string using a stack.

def __init__(self):

self._items =[]

def push(self, item):

self._items.append(item)
def pop(self):

return self._items.pop()
def is_empty():

return self._items == []

52

EXERCISE-ICA-17 p.2

Given the Stack class, write a

function balanced (s) that

returns True if the string s is

def __init__(self): balanced with respect to ‘[*and ']’
and False otherwise.

class Stack:

self. _items =]

def push(self, item):

self._items.append(item)
def pop(self):

return self._items.pop()
def is_empty(self):

return self._items == []

53

EXERCISE-ICA-17 p.3

Change the implementations of the
| Stack: push() and pop() methods so that
class Stack: the top of the stack is at the

def _init__ (self): beginning of the list.

self. _items =]

def push(self, item):

self._items.append(item)
def pop(self):

return self._items.pop()
def is_empty(self):

return self._items == []

54

Related: Displaying web pages

Web page

THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCH
CSc 120: Phylogenetic Trees

This problem brings together many different programmin
and trees. It is one of the most technically challenging pr

Background

An evolutionary tree (also called a phylogenetic tree) is a

This program involves writing code to construct phylogen|
example, since programs are sequences of characters, w¢

Expected Behavior

Write a Python program, in a file phylo.py, that behaves

1. Read in the input parameters:
o Read in the name of an input file using input
o Read in an integer value N using input('n-gr

2. Read in the input file. The file format is specified un

55

Related: Displaying web pages

Web page Display considerations
THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCE/ main header: large font, bold
]

CSc 120: Phylogenetic Trees

This problem brings together many different programmin
and trees. It is one of the most technically challenging pr

Background

/ secondary header: medium font, bold

An evolutionary tree (also called a phylogenetic treefis a ﬁluestion: how does \
This program involves writing code to constfuct phylogen| the Web browser flgu re

example, since programs are sequences of characters, w¢ b
old font :
| out how much a given

Expected Behavior .
P 4/ display format should
Write a Python program, in a fil ph:w_ — italics font include?
1| Read in the_mput parameters -inpu ca input Eg, WhICh text is in
o Read in an integer v using input('n-gr boldface, how much is in

. Read in the input file|The file format is specified un waﬁcs' etc. /

N

56

Related: Displaying web pages

Web page

THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCH
CSc 120: Phylogenetic Trees

This problem brings together many different programmin
and trees. It is one of the most technically challenging pr

Background

An evolutionary tree (also called a phylogenetic tree) is a

This program involves writing code to construct phylogen|
example, since programs are sequences of characters, w¢

Expected Behavior

Write a Python program, in a file phylo.py, that behaves

1. Read in the input parameters:
o Read in the name of an input file using input
o Read in an integer value N using input('n-gr

2. Read in the input file. The file format is specified un

HTML source

</head>

<body bgcolor="white">

<p>

<img src="../../IMGS/uadcs.gif" alt="University of Arizona, Depa
</p>

<h1>CSc 120: Phylogenetic Trees</hl>

This problem brings together many different programming construc
techniques we covered over the course of the semester including:
manipulation, (Python) lists, dictionaries, tuples, classes,
list comprehensions, and trees. It is one of the most
technically challenging programs assigned in this class this sen|
think it's also one of the most interesting.

<h2>Background</h2>

An <a href="http://evolution.berkeley.edu/evolibrary/article/phy|
evolutionary tree (also called a

<a href="https://en.wikipedia.org/wiki/Phylogenetic_tree"
target="_blank">phylogenetic tree) is a tree that express

evolutionary relationships between a set of organisms.

<p/>

This program involves writing code to construct phylogenetic tre

the genome sequences of a set of organisms. (O0f course, there i

inherently genetic about the techniques we use and the code we w

example, since programs are sequences of characters, we could ju

apply this approach to sets of programs.)

<h2>Expected Behavior</h2>
Write a Python program, in a file <tt>phylo.py</tt>, that
behaves as specified below.
<p/>

<i>Read in the input parameters</i>:

57

Related: Displaying web pages

Web page

THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCE

CSc 120: Phylogenetic Trees]

This problem brings together many different programmin
and trees. It is one of the most technically challenging pr

Background]

An evolutionary tree (also called a phylogenetic tree) is a

This program involves writing code to construct phylogen|
example, since programs are sequences of characters, w¢

Expected Behavior

Write a Python program, in a file phylo.py, that behaves

ll Read in the input parameters:\/_\
i nput file using inpu

o Read in an integer value N using input('n-gr

2. Read in the input file. The file format is specified un

HTML source

</head>

<body bgcolor="white">

<p>

<img src="../../IMGS/uadcs.gif" alt="University of Arizona, Depa|
</p>

<h14f5c 120: Phylogenetic Tree4</h1>

This problem brings together many different programming construc
techniques we covered over the course of the semester including:
manipulation, (Python) lists, dictionaries, tuples, classes,
list comprehensions, and trees. It is one of the most
technically challenging programs assigned in this class this sen|
think it's also one of the most interesting.

<h2 Background%/h2>

An = p://evolution.berkeley.edu/evolibrary/article/phy
evolutionary tree (also called a

<a href="https://en.wikipedia.org/wiki/Phylogenetic_tree"
target="_blank">phylogenetic tree) is a tree that express

evolutionary relationships between a set of organisms.

<p/>

This program involves writing code to construct phylogenetic tre

the genome sequences of a set of organisms. (O0f course, there i

inherently genetic about the techniques we use and the code we W

example, since programs are sequences of characters, we could jui

apply this approach to sets of programs.)

<hZiExpected Behavior}/h2>
Write a Python program, in a file <tt>phylo.py</tt>, that

behaves as specified below.
<p/>

\\\‘ziiRead in the input parameter4</i>:

58

Related: Displaying web pages

Web page

THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCH
CSc 120: Phylogenetic Trees

This problem brings together many different programmin
and trees. It is one of the most technically challenging pr

Background

An evolutionary tree (also called a phylogenetic tree) is a

This program involves writing code to construct phylogen|
example, since programs are sequences of characters, w¢

Expected Behavior

Write a Python program, in a file phylo.py, that behaves

1. Read in the input parameters:
o Read in the name of an input file using input
o Read in an integer value N using input('n-gr

2. Read in the input file. The file format is specified un

HTML source

</head>

<body bgcolor="white">

<p>

<img src="../../IMGS/uadcs.gif" alt="University of Arizona, Depa

</p>
CSc 120: Phylogenetic Trees

This problem brings together many different programming construc
techniques we covered over the course of the semester including:
manipulation, (Python) lists, dictionaries, tuples, classes,
list comprehensions, and trees. It is one of the most
technically challenging programs assigned in this class this sen|
think it's also one of the most interesting.

=

@Backg round

<a href="httpr7/evolution.berkeley.edu/evolibrary/article/ph
evolutionary tree (also called a

<a href="https://en.wikipedia.org/wiki/Phylogenetic_tree"
target="_blank">phylogenetic tree) is a tree that express

evolutionary relationships between a set of organisms.

<p/>

This program involves writing code to construct phylogenetic tre

the genome sequences of a set of organisms. (O0f course, there i

inherently genetic about the techniques we use and the code we w

example, since programs are sequences of characters, we could ju

apply this approach to sets of programs.)

<h24Expected Behavior: -
Write a Python program; a file <tt>phylo.py</tt>, that

behaves as specified below.
<p/>

L
<i>Read in the input parameterse</i=|:

—

59

Related: Displaying web pages

|Itagsll

<h1>
</h1>
<h2>
</h2>
<i>:"open italics"

'‘open heade
'close header
'‘open header

'close header

</i>: "close italics"

HTML source

</head>
<body bgcolor="white">

<p>
:ﬁBE‘Schf../../IMGS/uadcs.uif" alt="University of Arizona, Dep3
</p>

CSc 120: Phylogenetlc Tree

This problem brings together many different programming construc
De hnlques we covered over the course of the semester including:
ion, (Python) lists, dictionaries, tuples, classes,

and trees. It is one of the most

i
a href="ht{pT7/evolution.berkeley.edu/evolibrary/article/phy
utionary tree (also called a
<"https://en.wikipedia.org/wiki/Phylogenetic_tree"

<" blank">phylogenetic tree) is a tree that express
evolutionaky relationships between a set of organisms.

<p/>

m Expected Behaviord

e a Python program,
aves as specified below.

60

Related: Displaying web pages

Web page

THE UNIVERSITY OF ARIZONA,
DEPARTMENT OF COMPUTER SCIENCH

CSc 120: Phylogenetic Trees

HTML source

</head>

<body bgcolor="white">

<p>

<img src="../../IMGS/uadcs.gif" alt="University of Arizona, Depa

</p
<h1 CSc 120: Phylogenetic Treesq /h1

ThlS problem brings together many different programming construc

This problem brings tor/
and trees. It is one of t

Background

An evolutionary tree (a3

This program involves
example, since prograr

Figuring out how to display different parts of |
the web page requires matching up “open-”
and “close-” HTML tags. This is essentially the
same problem as balancing parens.

f the semester including:
‘<§§s tuples, classes,
e of the most

in this class this sen

/evolibrary/article/phy|

ylogenetic_tree"
is a tree that express

of organisms.

AT//Astruct phylogenetic tref
Trre—geTome—sequerces—o—o—cr—or—orgarfisms. (0f course, there i

Expected Behavior

Write a Python program, in a file phylo.py, that behaves

1. Read in the input parameters:
o Read in the name of an input file using input
o Read in an integer value N using input('n-gr

2. Read in the input file. The file format is specified un

1nherent1y genetlc about the techniques we use and the code we W
example, since programs are sequences of characters, we could ju
apply this approach to sets of programs.)

<h24Expected Behavior: -
Write a Python program, a file <tt>phylo.py</tt>, that

behaves as specified below.
<p/>

<Li
<i>Read in the input parametersi</i>|:

—

61

queues

A Queue ADT

A gueue is a linear data structure where insertions
and deletions happen at different ends

— insertions happen at one end (the queue's "back”, or
lltailﬂ)

— deletions happen at the other end (the queue's "front,
or “head”)

insertions deletions
occur at $ ‘—‘_“ <: occur at
this end this end

(tail) (head)

63

Queues: insertion of values

Insertion pfa sequence ¢ 17 33 g 43
of values into a queue:

queue queue

back None front None

64

Queues: insertion of values

Insertion of a sequence
of values into a queue:

gueue
back

5

17 33 9 43

gueue
front

65

Queues: insertion of values

Insertion of a sequence
of values into a queue:

17

33 9 43

17 5

gueue
back

gueue
front

66

Queues: insertion of values

Insertion pf a sequence 33| 9 43
of values into a queue:

33 17 5

gueue gueue
back front

67

Queues: insertion of values

Insertion of a sequence 9 43
of values into a queue:

gueue gueue
back front

68

Queues: insertion of values

Insertion of a sequence
of values into a queue:

43 9 33 17

gueue gueue
back front

Queues: insertion of values

order of insertion ———»5 17 33 9 43

43 9 33 17 5

gueue gueue
back front

70

Queues: removal of values

order of insertion ———»5 17 33 9 43

Removing values
from this queue:

43 9 33 17 5

— —

gueue gueue
back front

71

Queues: removal of values

order of insertion ———»5 17 33 9 43

Removing values

from this queue: >

43 9 33 17

— N

gueue gueue
back front

72

Queues: removal of values

order of insertion ———»5 17 33 9 43

Removing values

from this queue: >

43 9 33

\ \

gueue gueue
back front

73

Queues: removal of values

order of insertion ———»5 17 33 9 43

Removing values

from this queue: > 1733
43 9
\ Y-
Y
gueue gueue

back front

74

Queues: removal of values

order of insertion ———»5 17 33 9 43

Removing values

from this queue: > 17339
43
;V\\
Y
gueue gueue

back front

75

Queues: removal of values

order of insertion ———»5 17 33 9 43

Removing values

from this queue: > 1733 9 43

queue queue

back None front None

76

Queues: removal of values

order of insertion ——»

5 17 33 9 43

5 17 33 9 43

order of removal —»

77

Queues: FIFO property

order of insertion ——»

—

5 17 33 9 43

values are removed in
— order in which they are

5 17 33 9 43 | [nsertec

order of removal —» "EIEO order”

First in, First out

78

Methods for a queue class

Queue(): creates a new empty queue

enqueue(item): adds item to the back of the queue
— modifies the queue
— returns nothing

dequeue(): removes and returns the item at the front
of the queue

— returns the removed item
— modifies the queue

is_empty(): checks whether the queue is empty
— returns a Boolean

size(): returns the size of the queue
— returns an integer

79

EXERCISE

>>> g = Queue()
>>> g.enqueue(4)
>>> g.enqueue(17)
>>> X = g.dequeue()
>>> g.enqueue(5)
>>>y = g.dequeue()

& what are the values of x and y?

80

EXERCISE

>>> g = Queue()
>>> g.enqueue(4)
>>> g.enqueue(17)
>>> X = g.dequeue()
>>>y = g.dequeue()
>>> g.enqueue(y)
>>> g.enqueue(x)

>>> g.enqueue(y)

& what does the queue q look like here?

81

Implementing a queue class

* Use a built-in list for the internal representation
— Python lists can be added to from the front or the end

* First implementation
— the head is the nth element
— the tail is the 0t element

e Second implementation:
— the head is the 0t element
— the tail is the nth element

82

EXERCISE-ICA18-prob 1

Implement a queue with a Python list. Make the front
of the queue the nth (last) item in the list.

Note: alist.insert(0,item) inserts at the front of alist

0O 1 2 3 4 5

> >
tail head

class Queue:
def __init_ (self):

def enqueue(self, item):

def dequeue(self):

83

Answer: implementation |

class Queue:
the front of the queue is the last item in the list

def __init__(self): 0 12 3 4 5
> >
tail head

self. _items =]

def enqueue(self, item):

self._items.insert(0, item) removes and

returns the last
def dequeue(self): / item in the list
return self._items.pop()

84

Answer: implementation |l

class Queue:
the front of the queue is the first item in the list

def __init__(self): 0 12 3 4 5
< <
head tail

self. _items =]

def enqueue(self, item):

self._items.append(item) removes and

returns item O

def dequeue(self): from the list

return self._items.pop(0)

85

gueues: applications

Application 1: Simulation

* Typical applications simulate problems that require
data to be managed in a FIFO manner

— Hot potato

o Kids stand in a circle and pass a “hot potato” around until told to
stop. The person holding the potato is taken out of the circle. The
process is repeated until only one person remains.

* Use a simulation to determine which person remains
after num "passes" or rounds
— Person at front of queue "holds" the potato
— To pass the potato: simulate by dequeue/enqueue

— After a given number of passes, the person at the front is
removed: simulate by dequeue

— Let’s see this in action

EXERCISE-ICA18-prob 2

Werite a function hot_potato(g, num) that takes a
gueue g and the number of rounds of simulation
num and eliminates the correct element after num
rounds.

What operations take an element from the front of
the queue and place it at the back of the queue?

88

Solution

def hot_potato(qg, num):
foriin range(num):
X = g.dequeue()

g.enqueue(x)

return g.dequeue()

89

Application 2 : Simulation

e Suppose we are opening a grocery store. How
many checkout lines should we put in?
— too few = long wait times, unhappy customers
— too many = wasted money, space

* Use simulations of the checkout process to guide
the decision

— study existing stores to figure out typical shopping and
checkout times

— estimate no. of customers expected at the new location

— run simulations to determine customer wait time and
checkout line utilization under different scenarios

Discrete event simulation

arrivals

departures «—(-

<_C/ queue

servers X

By varying the parameters of the customers
simulation (arrival and departure arrival rate
rates, no. of servers) we can try distribution
out different scenarios

!
BER
S

departure rate
distribution

91

summary

 Stacks and queues are abstract data types (ADTs)
— similar in that they are both linear data structures
— items can be thought of as arranged in a line

— each item has a position and a before/after relationship
with the other items

* They differ in the way items are added and removed
— stacks: items added and removed at one end
o results in LIFO behavior
— gueues: items added at one end, removed at the other
o results in FIFO behavior

* They find a wide range of applications in computer
science

