
CSc 120
Introduction to Computer Programming II

05: Abstract Data Types
Stacks and Queues

Abstract Data Types

2

Abstract Data Types
An abstract data type (ADT) describes a set of data
values and associated operations that are specified
independent of any particular implementation.

An ADT is a logical description of how we view the
data and the operations allowed on that data.

odescribes what the data represents
onot how is the data represented

The data is encapsulated.

3

Abstract Data Types

Because the data is encapsulated we can change the
underlying implementation without affecting the
logical way the ADT behaves.

o the logical description remains the same
o the operations remain the same (abstractly)

Example:
o lists

• Python built-in lists
• linked lists

4

Abstract Data Types
Consider the ADT definition of a list.
Lists:

o logical description
o linear ordering of elements
o elements can be inserted or deleted from any location

ooperations
o len, indexing, slicing, in, concatenation, insert, delete, ...

5

linear data structures

6

Linear data structures
A linear data structure is a collection of objects with
a straight-line ordering among them

‒ each object in the collection has a position
‒ for each object in the collection, there is a notion of the

object before it or after it

7

Data structures we've seen

Linear

• Python lists
• Linked lists

Not linear

• Dictionaries*
• Sets

8

*Prior to Python v7

Today's topic

Linear

• Python lists
• Linked lists
• Stacks
• Queues
• Dequeues

Not linear

• Dictionaries*
• Sets

9

Key property: the way in which
objects are added to, and
removed from, the collection

*Prior to Python v7

stacks

10

EXERCISE-whiteboard
• Think of a stack of plates in a cafeteria.
• What are some of the logical operations that

you would specify for a stack of plates?
• Describe three operations.

11

The Stack ADT
A stack is a linear data structure where objects are
inserted or removed only at one end

‒ all insertions and deletions happen at one particular end
of the data structure

‒ this end is called the top of the stack
‒ the other end is called the bottom of the stack

12

insertions and deletions
happen at one end

Stacks: insertion of values
Insertion of a sequence
of values into a stack:

5 17 33 9 43

13

stack
bottom

stack
top

None

None

Stacks: insertion of values
Insertion of a sequence
of values into a stack:

5 17 33 9 43

14

stack
bottom

stack
top

5

Stacks: insertion of values
Insertion of a sequence
of values into a stack:

5 17 33 9 43

15

stack
bottom

stack
top

5
17

Stacks: insertion of values
Insertion of a sequence
of values into a stack:

5 17 33 9 43

16

stack
bottom

stack
top

5
17
33

Stacks: insertion of values
Insertion of a sequence
of values into a stack:

5 17 33 9 43

17

stack
bottom

stack
top

5
17
33
9

Stacks: insertion of values
Insertion of a sequence
of values into a stack:

5 17 33 9 43

18

stack
bottom

stack
top

5
17
33
9

43

Stacks: insertion of values

5 17 33 9 43

19

stack
bottom

stack
top

5
17
33
9

43

order in which values were inserted

Stacks: removal of values

20

stack
bottom

stack
top

5
17
33
9

43

5 17 33 9 43

Removing values from
the stack:

order in which values were inserted

Stacks: removal of values

21

stack
bottom

stack
top

5
17
33

43

5 17 33 9 43

Removing values from
the stack:

43

order in which values were inserted

9

Stacks: removal of values

22

stack
bottom

stack
top

5
17

43

5 17 33 9 43

Removing values from
the stack:

43 9

order in which values were inserted

9
33

Stacks: removal of values

23

stack
bottom

stack
top

5

43

5 17 33 9 43

Removing values from
the stack:

43 9 33

order in which values were inserted

9
33
17

Stacks: removal of values

24

stack
bottom

stack
top

43

5 17 33 9 43

Removing values from
the stack:

43 9 33 17

order in which values were inserted

9
33
17
5

Stacks: removal of values

25

stack
bottom

stack
top

5

43

5 17 33 9 43

Removing values from
the stack:

43 9 33 17 5

order in which values were inserted

9
33
17

None

None

Stacks: removal of values

26

5 17 33 9 43

Removing values from
the stack:

43 9 33 17 5

order in which values were inserted

order in which values were removed

Stacks: LIFO property

27

5 17 33 9 43

Removing values from
the stack:

43 9 33 17 5

order in which values were inserted

order in which values were removed

values are removed in
reverse order from the
order of insertion

"LIFO order"
Last in, First out

The Stack ADT
A stack is a linear data structure where objects are
inserted or removed only at one end

‒ all insertions and deletions happen at one particular end
of the data structure

‒ this end is called the top of the stack
‒ the other end is called the bottom of the stack

Operations
‒ insert at the top (called push)
‒ delete from the top (called pop)

28

Methods for a Stack class
• Stack() : creates a new empty stack

• push(item) : adds item to the top of the stack
‒ returns nothing
‒ modifies the stack

• pop() : removes the top item from the stack
‒ returns the removed item
‒ modifies the stack

• is_empty() : checks whether the stack is empty
‒ returns a Boolean

29

EXERCISE
>>> s = Stack()
>>> s.push(4)
>>> s.push(17)
>>> s.push(5)
>>> x = s.pop()
>>> y = s.pop()

30

← what does the stack s look like here?
what are the values of x and y?

EXERCISE
>>> s = Stack()
>>> s.push(4)
>>> s.push(17)
>>> s.push(5)
>>> x = s.pop()
>>> y = s.pop()
>>> s.push(x)
>>> s.push(y)

31

← what does the stack s look like here?

EXERCISE-ICA-16, prob 2
Implement the Stack class below. Use a Python list to hold the data.
Note: given a list alist, the Python method alist.pop() removes the last
element of the list.
class Stack:

create a Stack
def __init__(self):

self._items = ?

adds item to the "top"
def push(self, item):

?

removes the last item from the Stack
def pop(self):

?

32

Implementing a Stack class
class Stack:

the top of the stack is the last item in the list
def __init__(self):

self._items = []

def push(self, item):
self._items.append(item)

def pop(self):
return self._items.pop()

33

removes and returns
the last item in a list

EXERCISE- Whiteboard
>>> s1 = Stack()
>>> s1.push(4)
>>> s1.push(17)
>>> s2 = Stack()
>>> s2.push(s1.pop())
>>> s2.push(s1.pop())
>>> s1.push(s2.pop())
>>> s1.push(s2.pop())

34

← what does the stack s1 look like here?

stacks: applications

35

An application: balancing parens

36

IDLE (the Python shell) matches up left and right
parens (), brackets [], and braces { }

How does it figure out how far back to highlight?

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

37

Stack (empty)

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

38

[

Stack

â
ß top

push

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

39

[

[

â

Stack

[

ß top

ß top

push

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

40

[

[
â

Stack

[

[

[

[

ß top

ß top

push

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

41

[

[

â

Stack

[

[

[

[

ß top

matches:
pop

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

42

[

[

â

Stack

[

[

[

[

ß top

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

43

[

[

â

Stack

[

[

[

[

ß top

push

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

44

[

[

â

Stack

[

[

[

[

ß top

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

45

[

[

â

Stack

[

[

[

[

ß top

matches:
pop

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

46

[

[

â

Stack

[

[

[

[

ß top

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

47

[

[

â

Stack

[

[

[

[

ß top

matches:
pop

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

48

[

[

â

Stack

[

[

[

[ß top

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

49

[

[

â

Stack

[

[

[

[ß top
matches:
pop

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

Note: the stack should be empty when the input
has been processed

50

Stack (empty)

An application: balancing parens
Basic idea: Match each] with corresponding [

‒ similarly for (…) and { … } pairs

‒ Idea:
o maintain a stack
o on seeing '[' : push the symbol
o on seeing ']' : pop the matching symbol

Example: [1, 2, [3, [4], 5 , [7]]]

Elaboration: Have each stack element keep
track of the position of its [

51

[

[

Stack

[

[

[

[ß top

EXERCISE-ICA-17-p.1

52

Given the Stack class, write a
function reverse(s) that
reverses a string using a stack.class Stack:

def __init__(self):
self._items = []

def push(self, item):
self._items.append(item)

def pop(self):
return self._items.pop()

def is_empty():
return self._items == []

EXERCISE-ICA-17 p.2

53

Given the Stack class, write a
function balanced(s) that
returns True if the string s is
balanced with respect to ‘[‘ and ’]’
and False otherwise.

class Stack:
def __init__(self):

self._items = []

def push(self, item):
self._items.append(item)

def pop(self):
return self._items.pop()

def is_empty(self):
return self._items == []

EXERCISE-ICA-17 p.3

54

Change the implementations of the
push() and pop() methods so that
the top of the stack is at the
beginning of the list.

class Stack:
def __init__(self):

self._items = []

def push(self, item):
self._items.append(item)

def pop(self):
return self._items.pop()

def is_empty(self):
return self._items == []

Related: Displaying web pages
Web page

55

Related: Displaying web pages
Web page Display considerations

56

main header: large font, bold

secondary header: medium font, bold

italics font

bold font

Question: how does
the web browser figure
out how much a given
display format should
include?
E.g., which text is in
boldface, how much is in
italics, etc.

Related: Displaying web pages
Web page HTML source

57

Related: Displaying web pages
Web page HTML source

58

Related: Displaying web pages
Web page HTML source

59

Related: Displaying web pages
HTML source

60

"tags"

<h1> : "open header 1"
</h1> : "close header 1"
<h2> : "open header 2"
</h2> : "close header 2"
<i> : "open italics"
</i> : "close italics"

…

Related: Displaying web pages
Web page HTML source

61

Figuring out how to display different parts of
the web page requires matching up “open-”
and “close-” HTML tags. This is essentially the
same problem as balancing parens.

queues

62

A Queue ADT
A queue is a linear data structure where insertions
and deletions happen at different ends

‒ insertions happen at one end (the queue's "back“, or
“tail”)

‒ deletions happen at the other end (the queue's "front“,
or “head”)

63

deletions
occur at
this end

(head)

insertions
occur at
this end

(tail)

Queues: insertion of values
Insertion of a sequence
of values into a queue:

64

NoneNone
queue
back

queue
front

5 17 33 9 43

Queues: insertion of values

65

queue
back

queue
front

5

Insertion of a sequence
of values into a queue: 5 17 33 9 43

Queues: insertion of values

66

queue
back

queue
front

17 5

Insertion of a sequence
of values into a queue: 5 17 33 9 43

Queues: insertion of values

67

queue
back

queue
front

33 17 5

Insertion of a sequence
of values into a queue: 5 17 33 9 43

Queues: insertion of values

68

queue
back

queue
front

9 33 17 5

Insertion of a sequence
of values into a queue: 5 17 33 9 43

Queues: insertion of values

69

queue
back

queue
front

43 9 33 17 5

Insertion of a sequence
of values into a queue: 5 17 33 9 43

5 17 33 9 43

Queues: insertion of values

70

queue
back

queue
front

43 9 33 17 5

order of insertion

5 17 33 9 43

Queues: removal of values

71

queue
back

queue
front

43 9 33 17 5

order of insertion

Removing values
from this queue:

5 17 33 9 43

Queues: removal of values

72

queue
back

queue
front

43 9 33 5

order of insertion

Removing values
from this queue: 5

17

5 17 33 9 43

Queues: removal of values

73

queue
back

queue
front

43 9 17 5

order of insertion

Removing values
from this queue: 5 17

33

5 17 33 9 43

Queues: removal of values

74

queue
back

queue
front

43 33 17 5

order of insertion

Removing values
from this queue: 5 17 33

9

5 17 33 9 43

Queues: removal of values

75

queue
back

queue
front

9 33 17 5

order of insertion

Removing values
from this queue: 5 17 33 9

43

5 17 33 9 43

Queues: removal of values

76

queue
back

queue
front

43 9 33 17 5

order of insertion

Removing values
from this queue: 5 17 33 9 43

NoneNone

Queues: removal of values

77

5 17 33 9 43

order of insertion

5 17 33 9 43
order of removal

5 17 33 9 43

Queues: FIFO property

78

order of insertion

5 17 33 9 43
order of removal

values are removed in
order in which they are
inserted

"FIFO order"
First in, First out

Methods for a queue class
• Queue(): creates a new empty queue
• enqueue(item): adds item to the back of the queue

‒ modifies the queue
‒ returns nothing

• dequeue(): removes and returns the item at the front
of the queue

‒ returns the removed item
‒ modifies the queue

• is_empty(): checks whether the queue is empty
‒ returns a Boolean

• size(): returns the size of the queue
‒ returns an integer

79

EXERCISE
>>> q = Queue()
>>> q.enqueue(4)
>>> q.enqueue(17)
>>> x = q.dequeue()
>>> q.enqueue(5)
>>> y = q.dequeue()

80

← what are the values of x and y?

EXERCISE
>>> q = Queue()
>>> q.enqueue(4)
>>> q.enqueue(17)
>>> x = q.dequeue()
>>> y = q.dequeue()
>>> q.enqueue(y)
>>> q.enqueue(x)
>>> q.enqueue(y)

81

← what does the queue q look like here?

Implementing a queue class
• Use a built-in list for the internal representation

‒ Python lists can be added to from the front or the end

• First implementation
‒ the head is the nth element
‒ the tail is the 0th element

• Second implementation:
‒ the head is the 0th element
‒ the tail is the nth element

82

EXERCISE-ICA18-prob 1
Implement a queue with a Python list. Make the front
of the queue the nth (last) item in the list.
Note: alist.insert(0,item) inserts at the front of alist

class Queue:
def _ _init_ _(self):

def enqueue(self, item):

def dequeue(self):
83

0 1 2 3 4 5�
tail

�

head

Answer: implementation I
class Queue:

the front of the queue is the last item in the list
def __init__(self):

self._items = []

def enqueue(self, item):
self._items.insert(0, item)

def dequeue(self):
return self._items.pop()

84

removes and
returns the last
item in the list

0 1 2 3 4 5�
tail

�

head

Answer: implementation II
class Queue:

the front of the queue is the first item in the list
def __init__(self):

self._items = []

def enqueue(self, item):
self._items.append(item)

def dequeue(self):
return self._items.pop(0)

85

removes and
returns item 0
from the list

0 1 2 3 4 5

�

head

�

tail

queues: applications

86

Application 1: Simulation
• Typical applications simulate problems that require

data to be managed in a FIFO manner
‒ Hot potato

o Kids stand in a circle and pass a “hot potato” around until told to
stop. The person holding the potato is taken out of the circle. The
process is repeated until only one person remains.

• Use a simulation to determine which person remains
after num "passes" or rounds

‒ Person at front of queue "holds" the potato
‒ To pass the potato: simulate by dequeue/enqueue
‒ After a given number of passes, the person at the front is

removed: simulate by dequeue
‒ Let’s see this in action

87

EXERCISE-ICA18-prob 2
Write a function hot_potato(q, num) that takes a
queue q and the number of rounds of simulation
num and eliminates the correct element after num
rounds.

What operations take an element from the front of
the queue and place it at the back of the queue?

88

Solution
def hot_potato(q, num):

for i in range(num):
x = q.dequeue()
q.enqueue(x)

return q.dequeue()

89

Application 2 : Simulation
• Suppose we are opening a grocery store. How

many checkout lines should we put in?
‒ too few Þ long wait times, unhappy customers
‒ too many Þ wasted money, space

• Use simulations of the checkout process to guide
the decision

‒ study existing stores to figure out typical shopping and
checkout times

‒ estimate no. of customers expected at the new location
‒ run simulations to determine customer wait time and

checkout line utilization under different scenarios

90

Discrete event simulation

91

…

queue

… arrivalsdepartures

arrival rate
distribution

departure rate
distribution

servers

customersBy varying the parameters of the
simulation (arrival and departure
rates, no. of servers) we can try
out different scenarios

Summary
• Stacks and queues are abstract data types (ADTs)

‒ similar in that they are both linear data structures
‒ items can be thought of as arranged in a line
‒ each item has a position and a before/after relationship

with the other items
• They differ in the way items are added and removed

‒ stacks: items added and removed at one end
o results in LIFO behavior

‒ queues: items added at one end, removed at the other
o results in FIFO behavior

• They find a wide range of applications in computer
science

92

