
CSc 120
Introduction to Computer Programming II

06: Recursion

Problem
How much money is in this cup?

Approach:
• We will consider a different way of adding up the coins
• The TAs will demonstrate!

2

How much money is in this cup?

If the cup is not empty:
Take out a coin. Pass the cup to the next person and
ask them:

“How much money is in this cup?”
When they answer, add your coin to their answer and
pass your answer back

your_answer = your_coin + their_answer
else the cup is empty:

Answer “zero” to the person who passed to you.
your_answer = 0

3

Challenge
Can we express that algorithm/process in Python?

Idea:
>>> cup = [5, 10, 1, 5]
>>> how_much_money(cup)
21

Write Python code that models the cup passing
example.

4

function: how_much_money

def how_much_money(cup):
if cup == []:

return 0
else:

5

function: how_much_money

def how_much_money(cup):
if cup == []:

return 0
else:

return cup[0] + how_much_money(cup[1:])

Usage:
>>> how_much_money([5, 10, 1, 5])
21

6

[10, 1, 5]5

Calls and returns

how_much_money([5,10,1,5])

| how_much_money([10,1,5])

| | how_much_money([1,5])

| | | how_much_money([5])

| | | | how_much_money([])

| | | | how_much_money returned 0

| | | how_much_money returned 5

| | how_much_money returned 6

| how_much_money returned 16

how_much_money returned 21
7

def how_much_money(cup):
if cup == []:

return 0
else:

return cup[0] + how_much_money(cup[1:])

Manual expansion of calls
>>> 5 + how_much_money([10, 1, 5])
21
>>> 5 + (10 + how_much_money([1,5]))
21
>>> 5 + (10 + (1 + how_much_money([5])))
21
>>> 5 + (10 + (1 + (5 + how_much_money([]))))
21

8

Recursion
A function is recursive if it calls itself:

def how_much_money(...):
...
how_much_money(...)
...

The call to itself is a recursive call

9

f recursive call

Recursion
A solution to a problem is recursive when it is
constructed from the solution to a simpler version of
the same problem.

10

Recursion
A solution to a problem is recursive when it is
constructed from the solution to a simpler version of
the same problem.

def how_much_money(cup):
if cup == []:

return 0
else:

return cup[0] + how_much_money(cup[1:])

11

simpler version of the problem
(or reduced data)

Recursion
• Recursive functions have two kinds of cases:

‒ base case(s) :
o do some trivial computation and return the result

‒ recursive case(s) :
o the expression of the problem is a simpler case of the same

problem
o the input is reduced or the size of the problem is reduced

• Note: the recursive call is given a smaller problem
to work on

‒ e.g., it makes progress towards the base case

12

recursion: base case/recursive case

def how_much_money(cup):
if cup == []:

return 0
else:

return cup[0] + how_much_money(cup[1:])

The convention is to handle the base case(s) first.

13

base case:
cup == []

recursive
case:
cup != []

Problem 1
Write a recursive function to count the number of
coins in a cup. The len function is not allowed.

Usage:
>>> count_coins([10, 5, 1, 5])
4

14

Solution

def count_coins(cup):
if cup == []:

return 0
else

return 1 + count_coins(cup[1:])

15

Solution

def count_coins(cup):
if cup == []:

return 0
else:

return 1 + count_coins(cup[1:])

16

recursive
case:
cup != []

base case:
cup == []

recursive call is on a smaller problem

Problem 2
Write a recursive function to count the number of
nickels in a cup.

Usage:
>>> count_nickels([10, 5, 1, 5, 1])
2

17

Solution

def count_nickels(cup):
if cup == []:

return 0
else:

if cup[0] == 5:
return 1 + count_nickels(cup[1:])

else:
return count_nickels(cup[1:])

18

base case:
cup == []

recursive
case:
cup != []

recursive call is on a smaller problem

Problem 3
Write a recursive function that returns the total
length of all the elements of a list of lists (a 2-d list).

Usage:
>>> total_length([[1,2], [8,2,3,4], [2,2,2]])
9

19

Solution

def total_length(alist):
if alist == []:

return 0
else:

return len(alist[0]) + total_length(alist[1:])

20

base case:
alist == []

recursive
case:
alist != []

recursive call is on a smaller problem

Problem 4
Recall that factorial is defined by the equation:

n! = n * (n-1) * (n-2) * (n-3)* ... * 2 * 1
and

0! = 1
Write a recursive function that computes the
factorial of a number.

Usage:
>>> fact(4)
24

21

Solution

def fact(n):
if n == 0:

return 1
else:

return n * fact(n-1)

22

base case:
n == 0

recursive
case:
n != 0

recursive call is on a smaller problem

EXERCISE-ICA18-p. 2

Write a recursive function sumlist(alist) that returns
the sum of the elements in alist.
Usage:

>>> sumlist([2,4,6,10])
22

23

EXERCISE-ICA18- p. 3

Write a recursive function string_len(s) that returns the
length of string s.

Usage:
>>> >>> string_len("I wandered lonely as a cloud")
28
>>>

24

EXERCISE-ICA18- p. 4

Write a recursive function join_all(alist) that takes a
list alist and returns a string consisting of every
element of alist concatenated together.
Usage:

>>> join_all([1,2,3,4,5])
'12345'
>>>
>>> join_all(['aa','bb'])
'aabb'

25

EXERCISE-ICA18-p. 5

Write a recursive function that implements join.
That is, write a function join(alist, sep) that
takes a list alist and creates a string consisting of
every element of alist separated by the string
sep.

Usage:
>>> join(['aa', 'bb' , 'cc'], '-')
'aa-bb-cc'

26

the runtime stack

27

How recursion works

28

How recursion works

29

We need the value of
n both before and
after the recursive call

\ its value has to be
saved somewhere

“somewhere” º
“stack frame”

How recursion works

Python's runtime system*
maintains a stack:

‒ push a "frame" when a
function is called

‒ pop the frame when the
function returns

30

* "runtime system" = the code that Python executes to make everything work at runtime

"frame" or "stack frame":
a data structure that keeps
track of variables in the
function body, and their
values, between the call to
the function and its return

How recursion works

Python's runtime system*
maintains a stack:

‒ push a "frame" when a
function is called

‒ pop the frame when the
function returns

31

* "runtime system" = the code that Python executes to make everything work at runtime

sometimes called the
"runtime stack"

How recursion works

32

stack frame for fact()

value of n value from
recursive call return value

How recursion works

33

stack frame for fact()

value of n value from
recursive call return value

stack
topß4

runtime stack
fact(4)

How recursion works

34

stack frame for fact()

value of n value from
recursive call return value

stack
topß

4

runtime stack

3

fact(4)

fact(3)

How recursion works

35

stack frame for fact()

value of n value from
recursive call return value

stack
topß

4

runtime stack

3

2

fact(4)

fact(2)

fact(3)

How recursion works

36

stack frame for fact()

value of n value from
recursive call return value

4

runtime stack

3

2

1
stack
topß

fact(4)

fact(3)

fact(2)

fact(1)

How recursion works

37

stack frame for fact()

value of n value from
recursive call return value

4

runtime stack

3

stack
topß

2

1

0

fact(4)

fact(3)

fact(2)

fact(1)

fact(0)

How recursion works

38

stack frame for fact()

value of n value from
recursive call return value

4

runtime stack

3

stack
topß

2

1

0 1

fact(4)

fact(3)

fact(2)

fact(1)

fact(0)

How recursion works

39

stack frame for fact()

value of n value from
recursive call return value

4

runtime stack

3

stack
topß

2

1 1 1

0 1

fact(4)

fact(3)

fact(2)

fact(1)

fact(0)

1 1 1

How recursion works

40

stack frame for fact()

value of n value from
recursive call return value

4

runtime stack

3

stack
topß

0 1

fact(4)

fact(3)

fact(2)

fact(1)

fact(0)

2 1 2

2 1 2

How recursion works

41

stack frame for fact()

value of n value from
recursive call return value

4

runtime stack

3 2 6
stack
topß

1 1 1

0 1

fact(4)

fact(3)

fact(2)

fact(1)

fact(0)

3 2 6

2 1 2

How recursion works

42

stack frame for fact()

value of n value from
recursive call return value

runtime stack

stack
topß

1 1 1

0 1

fact(4)

fact(3)

fact(2)

fact(1)

fact(0)

4 6 24

2 1 2

How recursion works

43

stack frame for fact()

value of n value from
recursive call return value

runtime stack

3 2 6

stack
topß

1 1 1

0 1

fact(4)

fact(3)

fact(2)

fact(1)

fact(0)

4 6 24

The runtime stack
• The use of a runtime stack containing stack frames is

not specific to recursion
‒ all function and method invocations use this mechanism
‒ not just in Python, but other languages as well (Java, C,

C++, …)

44

Problem 5
Write a recursive function to print the numbers from
1 through n, one per line.

Usage:
>>> print_n(6)
1
2
3
4
5
6

45

Solution

def print_n(n):
if n == 0:

return
else:

print_n(n-1)
print(n)

46

base case:
n = 0

recursive
case:
n != 0

recursive call is on a smaller value

Recursion How to

To write a recursive function, figure out:
What values are involved in the computation?

‒ these will be the arguments to the recursive function

• Base case(s)
‒ when does the recursion stop?
‒ what is the simple value or data that can be computed and

returned?

• Recursive case(s)
‒ what is the "smaller problem" to pass to the recursive call?
‒ what does a single round of computation involve?

47

Recursion how to: sumlist

def sumlist(L):
if len(L) = 0:

return 0
else:

return L[0] + sumlist(L[1:])

48

base case

recursive case

argument to recursive call is
"rest of the list" after L[0]
(recurses on a smaller problem)

One round of computation
adds L[0] and the result of
the recursive call

sumlist1([])

sumlist1([33])

sumlist1([22,33])

Recursion: flow of values
Version 1

def sumlist1(L):
if len(L) = 0:

return 0
else:

return L[0] + sumlist1(L[1:])

49

sumlist1([11,22,33])

0

33

55

66

Recursion

• The recursive case can be written many ways
• Consider summing the elements in a list

def sumlist(L):
if len(L) = 0:

return 0
else:

return L[0] + sumlist(L[1:])
• Options:

oRecurse on L[:-1] and then add in L[-1]
oRecurse on each half and add the results

51

EXERCISE-ICA-19

Do all problems.

52

Versions of sumlist
Version 1

def sumlist(L):
if len(L) = 0:

return 0
else:

return L[0] + sumlist(L[1:])

53

base case

recursive case

argument to recursive call is
"rest of the list" after L[0]
(recurses on a smaller problem)

One round of computation
adds L[0] and the result of
the recursive call

Versions of sumlist
Version 2

(variation on version 1)

def sumlist(L):
n = len(L)
if n == 0:

return 0
else:

return sumlist(L[:-1]) + L[-1]

54

add the last
element of L

argument to recursive call is "rest
of the list" up to the last element
(recurses on a smaller problem)

Versions of sumlist
Version 2

(variation on version 1)
Version 3

("smaller" need not be by just 1)

def sumlist(L):
n = len(L)
if n == 0:

return 0
else:

return sumlist(L[:-1]) + L[-1]

def sumlist(L):
if len(L) = 0:

return 0
elif len(L) == 1:

return L[0]
else:

return sumlist(L[:len(L)//2]) + \
sumlist(L[len(L)//2:])

55

argument to each recursive call is
half of the current list
(recurses on a smaller problem)

better for
parallel

execution

sumlist
def sumlist(L):

if len(L) = 0:
return 0

elif len(L) == 1:
return L[0]

else:
return sumlist(L[:len(L)//2]) + sumlist(L[len(L)//2:])

56

recursive sumlist

input list L

split into two
halves L1 L2

add the halves
(recursively) sum L1 sum L2

return the
sum of the
sums

add the sums

57

sumlist: example
sumlist([1,3,4,6,8])

58

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

59

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3])

60

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3])

1 3

61

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3])

1 3

4

62

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3]) sumlist([4]) sumlist([6,8])

1 3

4

63

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3]) sumlist([4]) sumlist([6,8])

1 3 4

4

64

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3]) sumlist([4]) sumlist([6,8])

1 3 4 sumlist([6]) sumlist([8])

4

65

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3]) sumlist([4]) sumlist([6,8])

1 3 4 sumlist([6]) sumlist([8])

4 6 8

66

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3]) sumlist([4]) sumlist([6,8])

1 3 4 sumlist([6]) sumlist([8])

4 6 8

14

67

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3]) sumlist([4]) sumlist([6,8])

1 3 4 sumlist([6]) sumlist([8])

4 6 8

14

18 ___________

68

sumlist: example
sumlist([1,3,4,6,8])

sumlist([1,3]) sumlist([4,6,8])

sumlist([1]) sumlist([3]) sumlist([4]) sumlist([6,8])

1 3 4 sumlist([6]) sumlist([8])

4 6 8

14

18 ___________

22_______________________

69

recursion: example
search

70

Searching an unsorted list
• Problem: Given an unsorted list L and a value a,

determine whether or not a is in L.

71

3 81 2 14 64 12 8 29 14 5L

a 29

0 1 2 3 4 5 6 7 8 9

Searching an unsorted list
• Problem: Given an unsorted list L and a value a,

determine whether or not a is in L.

72

3 81 2 14 64 12 8 29 14 5L

a 29

0 1 2 3 4 5 6 7 8 9

• Linear search: sequentially look at (possibly) all
values in the list.

á

Searching a sorted list
• Problem: Given a sorted list L and a value a,

determine whether or not a is in L.

73

L

a 29

0 1 2 3 4 5 6 7 8 9

Searching a sorted list
• Problem: Given a sorted list L and a value a,

determine whether or not a is in L.

74

14L

a 29

0 1 2 3 4 5 6 7 8 9

pick a value i in range(len(L))
say, i = 4

á
a > L[4]

Q: Can L[3] be a?

Searching a sorted list
• Problem: Given a sorted list L and a value a,

determine whether or not a is in L.

75

2 5 7 8 14L

a 29

0 1 2 3 4 5 6 7 8 9

pick a value i in range(len(L))
say, i = 4

á

L sorted and a > L[4]
means a cannot be any
of these elements

a > L[4]

Binary search: recursive solution
binary search - find an item in a sorted list

if the list is empty
the item is not found (return False)

look at the middle of the list
if we found the item

then done (return True)
else

if the item is less than the middle
search in the lower half of the list

else
search in the upper half of the list

76

EXERCISE-ICA-20

Do all problems.

77

Binary search: recursive solution
binary search - find an item in a sorted list

if the list is empty
the item is not found (return False)

look at the middle of the list
if we found the item

then done (return True)
else

if the item is less than the middle
search in the lower half of the list

else
search in the upper half of the list

78

EXERCISE-ICA21 p. 1

Write a recursive function bin_search(alist, item) that
that searches for item in alist and returns True if found
and False otherwise.

Usage:
>>>bin_search([4, 25, 28, 33, 47, 54, 65, 83], 65)
True
>>>

79

Binary search
def bin_search(L, item):

if L == []:
return False

mid = len(L)//2
if L[mid] == item :

return True
if item < L[mid]:

return bin_search(L[0:mid], item)
else:

return bin_search(L[mid+1:], item)

80

Binary search: complexity
• The size of the search area is halved at each round of

recursion

‒ The number of comparisons until we are done is
i, where n/2i = 1, or n = 2i

solving for i gives i = log2 n
‒ total no. of rounds of recursion = log2(n)

81

Comparisons Approx. number of items left

1 n/2

2 n/4

3 n/8

… …

i n/2i

Binary search: complexity
• The size of the search area is halved at each round

of repetition (recursion)
‒ total no. of rounds of recursion = log2(n)

or the number of comparisons is log2(n)

• However, on each round of repetition, the work
done is not a fixed amount due to slicing

‒ slicing is O(n)

• Fix that by computing the indices and passing them
as parameters.

82

Binary search: no slicing
def bin_search(L, item, lo, hi):

if lo > hi:
return False

if lo == hi:
return L[lo] == item

mid = (lo+hi)//2
if item <= L[mid]:

return bin_search(L, item, lo, mid)
else:

return bin_search(L, item, mid+1, hi)
84

Binary search: complexity
• The size of the search area is halved at each round

of recursion
‒ total no. of rounds of recursion = log2(n)

• On each recursive step, the work done is a fixed
amount

‒ O(1)

\ Overall complexity: O(log n)

85

recursion: example

87

Example: merging two sorted lists
Problem: Given two sorted lists L1 and L2, merge
them into a single sorted list

Example: L1 = [11, 22, 33], L2 = [5, 10, 15]
• Output: [5, 10, 11, 15, 22, 33]

‒ can't just concatenate the lists
‒ can't alternate between the lists

88

Merging: values involved
Problem: Given two sorted lists L1 and L2, merge them
into a single sorted list

1. Values involved in the computation in each (recursive)
call ?

L1 and L2

So the recursive function will look something like

def merge(L1, L2): # may need another argument
…

89

Merging: repetition
Problem: Given two sorted lists L1 and L2, merge
them into a single sorted list

2. What does the computation involve in each call?

90

5 10 11
15

3322

20 25

Merging: repetition
Problem: Given two sorted lists L1 and L2, merge
them into a single sorted list

2. What does the computation involve in each call?

91

5 10 11
15

3322

20 25move the smaller value into the merged list

Merging: repetition
Problem: Given two sorted lists L1 and L2, merge
them into a single sorted list

2. How does the problem (or data) get smaller?

92

5 10 11 15 3322

20 25move the smaller value into the merged list
repeat on the remaining list values

Merging: base case
Problem: Given two sorted lists L1 and L2, merge
them into a single sorted list

3. When can’t we make the data smaller?

93

5 10 11 15 3322

20 25

Merging: base case
Problem: Given two sorted lists L1 and L2, merge
them into a single sorted list

3. When can’t we make the data smaller?
‒ when either L1 or L2 is empty

94

or

in this case, concatenate the other list into the merged list

Merging: base case
The code looks something like:

def merge(L1, L2, merged): # note the new parameter
if L1 == []:

return merged + L2
elif L2 == []:

return merged + L1
else:

….

95

Merging: base case
The code looks something like:

def merge(L1, L2, merged): # note the new parameter
if L1 == [] or L2 == []:

return merged + L1 + L2
else:

….

96

Merging: recursive case

97

Problem: Given two sorted lists L1 and L2, merge
them into a single sorted list

4. What is "the rest of the computation"?
‒ "repeat on the remaining list values"

EXERCISE

Given the pseudocode below, write the recursive cases
for merge.
The arguments to merge are lists L1, L2, and merged

if L1[0] <= L2[0]
put L1[0] into the merged list
recursively merge using the rest of L1, L2, and merged

else
put L2[0] into the merged list
recursively merge using L1, the rest of L2, and merged

98

Merging: recursive case –V1

99

if L1[0] < L2[0]:
merged.append(L1[0])
return merge(L1[1:], L2, merged)

else:
merged.append(L2[0])
return merge(L1, L2[1:], merged)

Merging: recursive case-V2

100

if L1[0] < L2[0]:
new_merged = merged + [L1[0]]
new_L1 = L1[1:]
new_L2 = L2

else:
new_merged = merged + [L2[0]]
new_L1 = L1
new_L2 = L2[1:]

return merge(new_L1, new_L2, new_merged)

Merging: putting it all together

101

def merge(L1, L2, merged):
if L1 == [] or L2 == []:

return merged + L1 + L2
else:

if L1[0] < L2[0]:
new_merged = merged + [L1[0]]
new_L1 = L1[1:]
new_L2 = L2

else:
new_merged = merged + [L2[0]]
new_L1 = L1
new_L2 = L2[1:]

return merge(new_L1, new_L2, new_merged)

ba
se

 c
as

e
re

cu
rs

iv
e

ca
se

102

recursion: flow of values

103

Recursion: flow of values

104

values are computed and
passed down as arguments
into the recursive call

Recursion: flow of values

105

the computation of each round of
repetition takes place as values
are passed up as return values

EXERCISE-ICA21 p. 2 (repeat) & 3
Write a recursive function sum_diag(grid) that
returns the sum of the diagonal from upper left to
bottom right in a grid, i.e., it sums grid[0][0],
grid[1][1], and so on.

Usage:
>>> sum_diag([[1,2,3], [10,20,30],
[100,200,300]],1)
321

106

EXERCISE-ICA21 p. 4 & 5
Write a recursive function zip(a,b), that combines the
elements of lists a and b, in two ways.

107

recursion: application
merge sort

108

Sorting
• Problem: Given a list L, sort the elements of L into a

list sortedL

• Important problem
‒ arises in a wide variety of situations
‒ many different algorithms, with different assumptions

and characteristics
‒ we will consider just one algorithm

109

Algorithm: mergesort

input list L

split into two
halves L1 L2

sort the halves
recursively sortedL1 sortedL2

merge the
sorted lists sortedL

110
Divide and conquer algorithm

Divide and Conquer
• An algorithm paradigm based on multi –branched

recursion

‒ Recursively break the problem down into two or more
sub-problems (until they are trivial to solve)

‒ Combine the solutions of the sub-problems to give the
solution to the original problem

111

Mergesort
• Base case: len(L) <= 1

‒ no further halving possible

• Recursive case:
‒ set up the next round of computation: split the list
‒ smaller problem to recurse on: a list of half the size

• Each round of computation: merging the sorted lists
‒ has to be done after the recursive call

112

Mergesort
def msort(L):

if len(L) <= 1:
return L

else:
split_pt = len(L)//2
L1 = L[:split_pt]
L2 = L[split_pt:]
sortedL1 = msort(L1)
sortedL2 = msort(L2)
return merge(sortedL1, sortedL2,[])

113

Mergesort: example
msort([1, 3, 2, 5, 4])

114

msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

Mergesort: example

115

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3])

116

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3])

[1] [3]

117

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3])

[1] [3]

merge([1], [3])

118

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3])

[1] [3]

merge([1], [3])

[1, 3]

119

msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3])

[1] [3]

merge([1], [3])

[1, 3]

Mergesort: example

120

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3]) msort([2]) msort([5, 4])

[1] [3]

merge([1], [3])

[1, 3]

121

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3]) msort([2]) msort([5, 4])

[1] [3] [2]

merge([1], [3])

[1, 3]

122

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3]) msort([2]) msort([5, 4])

[1] [3] [2] msort([5]) msort([4])

merge([1], [3])

[1, 3]

123

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3]) msort([2]) msort([5, 4])

[1] [3] [2] msort([5]) msort([4])

merge([1], [3]) [5] [4]

[1, 3]

124

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3]) msort([2]) msort([5, 4])

[1] [3] [2] msort([5]) msort([4])

merge([1], [3]) [5] [4]

[1, 3] merge([5], [4])

125

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3]) msort([2]) msort([5, 4])

[1] [3] [2] msort([5]) msort([4])

merge([1], [3]) [5] [4]

[1, 3] merge([5], [4])

[4, 5]

126

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3]) msort([2]) msort([5, 4])

[1] [3] [2] msort([5]) msort([4])

merge([1], [3]) [5] [4]

[1, 3] merge([5], [4])

[4, 5]

merge([2], [4,5])

127

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3]) msort([2]) msort([5, 4])

[1] [3] [2] msort([5]) msort([4])

merge([1], [3]) [5] [4]

[1, 3] merge([5], [4])

[4, 5]

merge([2], [4,5])

[2, 4, 5]

128

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3]) msort([2]) msort([5, 4])

[1] [3] [2] msort([5]) msort([4])

merge([1], [3]) [5] [4]

[1, 3] merge([5], [4])

[4, 5]

merge([2], [4,5])

[2, 4, 5]

merge([1, 3], [2, 4, 5])

129

Mergesort: example
msort([1, 3, 2, 5, 4])

msort([1, 3]) msort([2, 5, 4])

msort([1]) msort([3]) msort([2]) msort([5, 4])

[1] [3] [2] msort([5]) msort([4])

merge([1], [3]) [5] [4]

[1, 3] merge([5], [4])

[4, 5]

merge([2], [4,5])

[2, 4, 5]

merge([1, 3], [2, 4, 5])

[1, 2, 3, 4, 5]

130

Mergesort: complexity

Cost =
cost per
round of
repetition

x
no. of
rounds of
repetition

131

worst case

merging the sorted
lists is O(n)*

???

*if slicing is removed from merge

Mergesort: complexity

132

[a0, a1, …, an-1] n

[a0, …, an/2] [an/2+1, …, an-1] n/2

…

[a0, a1,a2, a3] … [an-4, an-3, an-2, an-1] 4

[a0, a1] [a2, a3] … [an-4, an-3] [an-2, an-1] 2

[a0] [a1] [a2] [a3] … [an-4] [an-3] [an-2] [an-1] 1

k
rounds

2k = n

Mergesort: complexity
• No. of rounds of recursion:

‒ if we start with a list of size n and have k rounds of
recursion, then 2k = n
\ log2(2k) = log2(n)
\ k = log2(n)

• Complexity of each round of recursion (for merge())
is: O(n)

133

Þ Worst-case complexity of mergesort: O(n log n)*

*if slicing is removed from msort() and merge()

recursion: summary

134

Recursion: summary
• Recursion offers a way to express repetitive

computations cleanly and succinctly
• How to:

‒ what are the values used in the recursive call?
‒ base case: when does the recursion stop?
‒ recursive case:

o what does a single round of computation involve?
o what is the “smaller problem” to recurse on?

• Recursion is an essential component of every good
computer scientist’s toolkit

135

