
CSc 120
Introduction to Computer Programming II

08: Testing

Why test?

• Mars Climate Orbiter
‒ Purpose: to study the Martian

climate and to serve as a relay for
the Mars Polar Lander

‒ Disaster: Bad trajectory caused it to
disintegrate in the upper
atmosphere of Mars

‒ Why: Software bug - failure to
convert English units to metric
values (pound-seconds vs. newton-
seconds) as specified in the contract

2

Why test?
• THERAC-25 Radiation Therapy
‒ 1985 to 1987: two cancer patients at the East Texas

Cancer Center in Tyler received fatal radiation overdose
(a total of 6 accidents) – massive overdose
‒Why: Software bug - mishandled race condition (i.e.,

miscoordination between concurrent tasks)

3

Why test?
• Hive Thermostat
• February, 2016: customers were roasting at home
• the thermostat mysteriously began setting the

temperature to 90 degrees F (32 C)

• Hive:
‒ “We are aware of a temporary glitch…where a certain

sequence of commands in the Hive iOS app can cause
thermostat temperature to rise to 90 degrees F.”

4

Why test?
• Hive user:

5

Purpose of testing

• Every piece of software is written with some
functionality in mind

• Testing aims to identify whether the program
meets its intended functionality
‒ "testing can only prove the presence of bugs, not their

absence"
‒ the more thoroughly your software is tested, the more

confidence you can have about its correctness

‒ "Test until fear turns into boredom." – Kent Beck

6

Testing and test cases

"thoroughly" ≠ lots of test cases

7

def main():

x = input()

if x %2 == 1: # x is odd

do_useful_computation()

else:

delete_all_files()

send_rude_email_to_boss()

crash_computer()

It isn’t enough to simply
have a lot of test cases.

They have to “cover” the
program adequately.

Approaches to testing

Black-box testing

• Focuses only on
functionality
‒ does not look at how

the code actually works

• Good for identifying
missing features,
misunderstandings of
the problem spec

White-box testing

• Focuses on the code
‒ examines the code to

figure out what tests to
use

• Good for identifying
bugs and programming
errors

8

black-box testing

9

Black-box testing: what to test?

• Based purely on the desired functionality
‒ shouldn’t be influenced by the particular code you wrote

(that’s white-box testing)

• Aspects to consider:
‒ expected outcome

o normal vs error
‒ characterizing values

o edge cases vs “regular” values

10

Black-box testing: Outcomes
• Choose tests for both normal and error behaviors
‒ assumes that we know what the error situations are

• Desired program behavior:
‒ on normal inputs: produce the expected behavior
‒ on error inputs:

o detect and indicate that an error occurred
o then behave appropriately as required by the problem spec

• Passing a test:
‒ the program passes a test if it shows the desired

behavior for that test

11

Black-box testing: Values
• Edge cases:
‒ at or near the end(s) of the range of a value the program

is supposed to operate on
‒ Examples:

o “zero-related” : 0, [], empty string, empty file, ...
o “one-related” : 1, ‒1, list with one element, file with one line,

...
o (maybe) large values

• “Regular” values:
‒ not edge cases

12

Example:
“Read a file containing integers and print the sum of
the numbers that occur on odd-numbered lines.”

Sample input file:

13

Example

Normal behavior

• no. of numbers = 1
‒ 0 adds

• no. of numbers = 3
‒ 1 add; 1 skip in-between

• no. of numbers = 4
‒ 1 add; 1 skip at end

• > 4 numbers
‒ several add operations

Error behavior

• input file does not exist
(or is unreadable)
• file has non-numeric

characters
• empty line
• more than one number

on a line

14

“Read a file containing integers and print the sum of
the numbers that occur on odd-numbered lines.”

Testing for outcome (legal vs. error):

Example

Edge cases

• empty file
• file with one number

Regular values
• a file with several

numbers, one per line

15

“Read a file containing integers and print the sum of
the numbers that occur on odd-numbered lines.”

Testing for values (edge cases vs. regular values):

Example

Normal behavior

• empty file
• file with one number
• a file with several

numbers, one per line

Error behavior
• input file does not exist (or

is unreadable)
• file has non-numeric

characters
• empty line
• more than one number on

a line

16

“Read a file containing integers and print the sum of
the numbers that occur on odd-numbered lines.”

Putting these together:

edge

regular

EXERCISE/ICA27

17

Do problems 1 and 2.

EXERCISE-ICA27-p.1

18

Consider this program specification:

Write a program that reads a file name and computes (and
prints out) the length of the longest line in that file.

Specify input files that exemplify each of the following:

a) two error cases

b) two edge cases

c) one regular (normal) case

EXERCISE/ICA27-p.1

19

Consider this program specification:

Write a program that reads a file name and computes (and prints
out) the length of the longest line in that file.

Specify input files that exemplify each of the following:
a) two error cases

the file does not exist
the file is readable but not organized into lines (it’s a JPEG,…)

a) two edge cases
the file has one line
the file is empty

a) one regular (normal) case
the file has many lines, each line containing readable values

EXERCISE/ICA27-p.2

20

Consider this program specification:

Write a program that reads a (possibly empty) file containing only
numbers (and whitespace) and prints out the difference between the
smallest and largest numbers. An empty input file should generate no
output.

Specify input files that exemplify each of the following:

a) two error cases

a) two edge cases

b) one regular (normal) case

EXERCISE/ICA27-p.2

21

Consider this program specification:

Write a program that reads a (possibly empty) file containing only
numbers (and whitespace) and prints out the difference between the
smallest and largest numbers. An empty input file should generate no
output.

Specify input files that exemplify each of the following:
a) two error cases
a file that does not exist
a file that does not have numbers in it
b) two edge cases
the file has one line with one number; an empty file
c) one regular (normal) case
a file with many lines, one number per line

EXERCISE

22

Consider the rhyming words assignment.
Specify input files that exemplify each of the following:

a) one error cases

b) one edge cases

c) one regular (normal) case

EXERCISE-sol

23

Consider the rhyming words assignment.
Specify input files that exemplify each of the following:

a) two error cases
An input file that has more than one pronunciation per line
An input file that has an incorrectly formatted pronunciation

b) one edge case
A small input file with correct pronunciations, but no two
words in the file rhyme.

c) one regular (normal) case
An input file that has two words, where the pronunciation of
each has phonemes meet the rules for rhyming

white-box testing

24

White-box testing: what to test?

• Ideally, that every path through the code works
correctly
‒ but this can be prohibitively difficult and expensive

25

White-box testing: what to test?

• Ideally, that every path through the code works
correctly
‒ but this can be prohibitively difficult and expensive

• Instead, what we often do is:
‒ check that the individual pieces of the program work

properly
‒ verify expected inputs/outputs of individual functions
‒ use assert statements to check those assumptions (called

invariants)

26

unit testing

Invariants and assertions
• Invariant: an expression at a program point that

always evaluates to True when execution reaches
that point

• Assertion: a statement that some expression E is an
invariant at some point in a program
‒ Python syntax:

assert E
assert E, ″error message″

27

Invariants and assertions
• Assertion: a statement that some expression E is an

invariant at some point in a program
oPython syntax:

assert E
assert E, ″error message″

• assert:
o E evaluates to True or False
o If E evaluates to True, program execution continues
o otherwise, the error message is printed and execution halts with

an AssertionError

28

Invariants and assertions

Assertion: a statement that some expression E is an
invariant at some point in a program

‒ Python syntax:
assert E
assert E, ″error message″

Example:
def sum_evens(nums):

assert len(nums) > 0, ”nums is empty”
. . .

29

Using asserts
• checking arguments to functions
‒ e.g., if an argument's value has to be positive
‒ Precondition(s) of the function

• checking data structure invariants
‒ e.g., i >= 0 and i < len(name)

• checking "can't happen" situations
‒ this also serves as documentation that the situation

can't happen

• after calling a function, to make sure its return
value is reasonable
‒ Postcondition(s) of the function

30

Using asserts
• Some invariants are complex:
‒ numlist has at least one even number
‒ arglist consists of strings that contain at least one

vowel

• You can write your own functions that can be used
in assert statements

31

EXERCISE/ICA27

32

Do problems 3, 4, and 5.

Whiteboard -REVIEW

33

• In black-box testing, what does the tester know about the code
being tested?

• When black-box testing, what are some of the kinds of cases we
should test?

o _________
o _________
o _________

• How does white-box testing differ from black-box testing?

__

Unit testing

• Tests individual units of code, e.g., functions,
methods, or classes
‒ e.g.: given specific test inputs, does the function behave

correctly?
o CloudCoder!

‒ useful for making programmers focus on the exact
behavior of the function being tested
o e.g., preconditions, postconditions, invariants

‒ helps find problems early

• Isolate a unit and validate its correctness
• Often automated, but can be done manually

34

grid_is_square(arglist) – returns True if arglist
has the shape of a square grid, i.e.,
the length of each element ("row") of arglist is
equal to the number of rows of arglist

def grid_is_square(arglist):
num_rows = len(arglist)
for row in arglist:

if len(row) != num_rows:
return False

return True

35

Unit testing

grid_is_square(arglist) – returns True if arglist
has the shape of a square grid, i.e.,
the length of each element ("row") of arglist is
equal to the number of rows of arglist

def grid_is_square(arglist):
num_rows = len(arglist)
for row in arglist:

if len(row) != num_rows:
return False

return True

36

• Write three white box test cases (inputs) for
this. (Use a whiteboard.)

• (I.e., give the specific arglist that would be
passed in to test the function.)

Unit testing

Code coverage

• Code coverage refers to how much of the code is
executed ("covered") by a set of tests
‒want to be at (or close to) 100%
‒ coverage tools report which parts of the program were

executed, and how much
o e.g., Coberta.py, CodeCover, Coverage.py (Python), etc.

• Figuring out how to increase coverage often leads
to testing edge cases

37

Unit testing: practical heuristics

• Check both normal and error behaviors
• edge-case inputs:
‒ zero values (0, empty list/string/tuple/file, …)
‒ singleton values (1, list/string/tuple/file of length 1, …)
‒ large values

• if statements: make sure each outcome (True/False)
is taken
• Loops: test 0, 1, >1 iterations

38

Unit testing: practical heuristics

• Check both normal and error behaviors
• edge-case inputs:
‒ zero values (0, empty list/string/tuple/file, …)
‒ singleton values (1, list/string/tuple/file of length 1, …)
‒ large values

• if statements: make sure each outcome (True/False)
is taken
• Loops: test 0, 1, >1 iterations

39

Unit testing: what to check?
• Not just “output is what we expect”
‒ very often, this is the only thing that programmers

check
‒ not enough:

o a program can produce the expected output “accidentally”

40

Passing test cases "accidentally"
• Problem spec:
‒ "Write a function grid_is_square(arglist) that returns

True if arglist is a square grid, i.e., its no. of rows equals
its no. of columns."

• Submitted "solution":
def grid_is_square(arglist):

return True

41

Passes half the
test cases …

… but is wrong!

Unit testing: what to check?
• Not just “output is what we expect”
‒ very often, this is the only thing that programmers

check
‒ not enough:

o a program can produce the expected output “accidentally”

• Check that invariants hold at key points

42

Unit testing: what to check?
• Not just “output is what we expect”
‒ remember “accidental” success

• Check that invariants hold at key points

43

if

CHECK CHECK

CHECK

Unit testing: what to check?
• Check that invariants hold at key points

44

loop

CHECK

CHECK

Unit testing: what to check?
• Check that invariants hold at key points

45

loop

CHECK

①Check that nothing breaks if the loop
does not execute at all

CHECK

Unit testing: what to check?
• Check that invariants hold at key points

46

loop

CHECK

①Check that nothing breaks if the loop
does not execute at all

CHECK

②Check that everything is initialized
properly when the loop is first entered

Unit testing: what to check?
• Check that invariants hold at key points

47

loop

CHECK

①Check that nothing breaks if the loop
does not execute at all

CHECK

②Check that everything is initialized
properly when the loop is first entered

③Check that everything is OK after going
around the loop

Unit testing: summary
• Test normal (include edge cases) and error values
• If statements: test all branches (if/elif/else)

• Loops: check invariants for:
‒ 0 iterations
‒ 1 iteration
‒ >1 iteration

• Functions:
‒ check return values

48

Example: buggy list-lookup

lookup(string, lst) -- returns the
position where the given string
occurs in lst.
def lookup(string, lst):

for i in range(len(lst)):
if string == lst[i]:

return i

49

Example: buggy list-lookup

lookup(string, lst) -- returns the
position where the given string
occurs in lst.
def lookup(string, lst):

for i in range(len(lst)):
if string == lst[i]:

return i

50

0, 1, >1 iterations Þ lists
of length 0, 1, 2

Example: (buggy) list-lookup

lookup(string, lst) -- returns the
position where the given string
occurs in lst.
def lookup(string, lst):

for i in range(len(lst)):
if string == lst[i]:

return i

51

0, 1, >1 iterations Þ lists
of length 0, 1, 2

both branches taken Þ
string is at positions 0, 1

Example: (buggy) list-lookup

lookup(string, lst) -- returns the
position where the given string
occurs in lst.
def lookup(string, lst):

for i in range(len(lst)):
if string == lst[i]:

return i

52

0, 1, >1 iterations Þ lists
of length 0, 1, 2

both branches taken Þ
string is at positions 0, 1

some possible test inputs:
'a', []

'a', ['a’]
'a', ['b','a’]

Example: (buggy) list-lookup

lookup(string, lst) -- returns the
position where the given string
occurs in lst.
def lookup(string, lst):

for i in range(len(lst)):
if string == lst[i]:

return i

53

0, 1, >1 iterations Þ lists
of length 0, 1, 2

both branches taken Þ
string is at positions 0, 1

some possible test inputs:
'a', []

'a', ['a’]
'a', ['b','a’]

Note: this will
catch the no-
return-value bug

EXERCISE/ICA-28

54

Do problems 1 and 2.

EXERCISE-ICA28-p1

average(lst) -- returns the
average of the numbers in lst.
def average(lst):

sum = 0
for i in range(len(lst)):

sum += lst[i]
return sum/len(lst)

55

Write four unit tests for the function below:

EXERCISE-ICA28-p1

average(lst) -- returns the
average of the numbers in lst.
def average(lst):

sum = 0
for i in range(len(lst)):

sum += lst[i]
return sum/len(lst)

56

0, 1, >1 iterations Þ lists
of length 0, 1, 2

EXERCISE-ICA28-p1

average(lst) -- returns the
average of the numbers in lst.
def average(lst):

sum = 0
for i in range(len(lst)):

sum += lst[i]
return sum/len(lst)

57

0, 1, >1 iterations Þ lists
of length 0, 1, 2

some possible test inputs:
[]

[17]
[5, 12]

EXERCISE-ICA28-p1

average(lst) -- returns the
average of the numbers in lst.
def average(lst):

sum = 0
for i in range(len(lst)):

sum += lst[i]
return sum/len(lst)

58

0, 1, >1 iterations Þ lists
of length 0, 1, 2

some possible test inputs:
[]

[17]
[5, 12]

Note: this will catch the
divide-by-zero on empty list
bug

Write four unit tests for the function below:

EXERCISE-ICA28-p2

Returns a list consisting of the strings in wordlist
that end with tail.
def words_ending_with(wordlist, tail):

outlist = []
for item in wordlist:

if item.endswith(tail):
outlist.append(item)

return outlist

59

Write four unit tests for the function below:

Testing strategy

• Test as a part of program development
‒ try out small tests even when the code is only

partially developed (i.e., lots of stubs)
o helps catch problems at function boundaries, e.g., number

and types of arguments
o can help identify bugs in the design, e.g., missing pieces

• Start with tiny test inputs (work your way up to
small, then medium, then large)
‒ problems found on tiny inputs are usually easier to

debug

60

EXERCISE/ICA28

61

Do problems 3 and 4.

