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EFFICIENCY MATTERS



Algorithm Analysis
• Objectives

‒ Understand why algorithm analysis is important
‒ Understand how to reason about performance (or 

efficiency) of an algorithm
‒ Be able to use “Big-O” to describe execution time
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reasoning about 
performance
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Reasoning about efficiency

def sumv1(n):
num = 0
for i in range(1,n+1):

num += i
return num

def sumv2(n):
num = (n*(n+1))/2
return num
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Consider two different programs that sum the integers from 1 to n



Reasoning about efficiency

def sumv1(n):
num = 0
for i in range(1,n+1):

num += i
return num

def sumv2(n):
num = (n*(n+1))/2
return num
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How would we compare them to see which is "better"?



Reasoning about efficiency

def sumv1(n):
num = 0
for i in range(1,n+1):

num += i
return num

def sumv2(n):
num = (n*(n+1))/2
return num
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How would we compare them to see which is "better"? Ideas?



EXERCISE-ICA-29 p1
• We could compare the difference in running times:

‒ Download sumv1(n)
o https://www.obagy.com/cs120/LECTURES/sumv1.py
o run this for these values of n: 10,000, 100,000, 1,000,000

‒ Download sumv2(n)
o https://www.obagy.com/cs120/LECTURES/sumv2.py
o run this for these values of n: 10,000, 100,000, 1,000,000

• Answer the questions in the ICA

8

https://www.obagy.com/cs120/LECTURES/sumv1.py
https://www.obagy.com/cs120/LECTURES/sumv2.py


Running Times on Mac 2.8GHz intel Core i7
sumV1 results:
n = 10000
sum = 50005000     : running time required was 0.0006452 seconds
n = 100000
sum = 5000050000 : running time required was 0.0072520 seconds
n = 1000000
sum = 500000500000 : running time required was 0.0804298 seconds

sumV2 results:
n = 10000
sum = 50005000      : running time required was 0.0000021 seconds
n = 100000
sum = 5000050000 : running time required was 0.0000029 seconds
n = 1000000
sum = 500000500000 : running time required was 0.0000021 seconds9



Reasoning about efficiency
• Observations on sumv1(n) vs sumv2(n):

‒ For sumv1, as we increase n, the running time increases
o increases in proportion to n 

‒ For sumv2, as we increase n, the running time stays the 
same

• But, execution time depends on many external 
factors…
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Reasoning about efficiency
• The time taken for a program to run

‒ can depend on:
o processor properties  (e.g., CPU speed, amount of memory)
o what other programs are running (i.e., system load)
o which inputs we use (some inputs may be worse than others)

• Want to compare different algorithms:
‒ without requiring that we implement them both first
‒ abstracting away processor-specific details
‒ focusing on running time (not memory usage)
‒ considering all possible inputs
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Reasoning about efficiency
• Algorithms vs. programs

‒ Algorithm:
o a step-by-step list of instructions for solving a problem

‒ Program: 
o an algorithm that been implemented in a given language

• We would like to compare different algorithms 
abstractly
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Comparing algorithms
• Search for a word my_word in a dictionary (a book)
• A dictionary is sorted

‒ Algo 1 (search from the beginning):
start at the first word in the dictionary
if the word is not my_word, then go to the next word
continue in sequence until my_word is found

‒ Algo 2: 
start at the middle of the dictionary
if my_word is greater than the word in the middle, 

start with the  middle word and continue from 
there to the end

if my_word is less than the word in the middle, 
start with the middle word and continue from 
there to the beginning
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ICA29-p2

• Which is better, Algo 1 (search from the beginning) or 
Algo 2 (search from the middle)?

What is the reason?

• Regardless of which algorithm that you chose, is there 
ever a scenario where the other one is better?

• When considering which is better, what measure are we 
using?
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Comparing algorithms

• Call comparison a primitive operation
‒ an abstract unit of computation

• Characterize an algorithm in terms of:
‒ how many primitive operations are performed
‒ best case and worst case

• Express this in terms of the size of the data (or size of its 
input)
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Primitive operations
• Abstract units of computation 

‒ convenient for reasoning about algorithms
‒ approximates typical hardware-level operations

• Includes:
‒ assigning a value to a variable
‒ looking up the value of a variable
‒ doing a single arithmetic operation
‒ comparing two values
‒ accessing a single element of a Python list by index
‒ calling a function
‒ returning from a function
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Primitive ops and running time
• A primitive operation 

‒ corresponds to a small constant number of machine 
instructions

• No. of primitive operations executed 
µ no. of machine instructions executed
µ actual running time

Note: the symbol µ means proportional to
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Example
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def lookup(str_, list_):
for i in range(len(list_)):

if str_ == list_[i]: 
return i

return -1

Code                               Primitive operations

len(list_) : 1

range( ) : 1

in : 1

for : 2

list_[i] : 1

str_ : 1

== : 1

if : 1

each iteration:
9 primitive ops



Primitive ops and running time

• We consider how a function's running time 
depends on the size of its input

‒ which input do we consider?

19



Best case vs. worst case inputs

• Best-case scenario?:

• Worst-case scenario?:
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# lookup(str_, list_): returns the index where str_ occurs in list_ 
def lookup(str_, list_):

for i in range(len(list_)):
if str_ == list_[i]: 

return i
return -1



Best case vs. worst case inputs

• Best-case scenario: str_ == list_[0]    # first element
‒ loop does not have to iterate over list_ at all
‒ running time does not depend on length of list_
‒ does not reflect typical behavior of the algorithm
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# lookup(str_, list_): returns the index where str_ occurs in list_ 
def lookup(str_, list_):

for i in range(len(list_)):
if str_ == list_[i]: 

return i
return -1



Best case vs. worst case inputs

• Worst-case scenario: str_ == list_[-1]    # last element
‒ loop iterates through list_ 
‒ running time is proportional to the length of list_
‒ captures the behavior of the algorithm better
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# lookup(str_, list_): returns the index where str_ occurs in list_ 
def lookup(str_, list_):

for i in range(len(list_)):
if str_ == list_[i]: 

return i
return -1



Best case vs. worst case inputs

• In reality, we get something in between
‒ but "average-case" is difficult to characterize precisely

• We will consider worst-case inputs
‒ can characterize this precisely
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# lookup(str_, list_): returns the index where str_ occurs in list_ 
def lookup(str_, list_):

for i in range(len(list_)):
if str_ == list_[i]: 

return i
return -1



Worst-case complexity
• Considers worst-case inputs
• Describes running time of an algo as a function of 

the size of its input 
‒ ("time complexity")

• Focuses on the rate at which the running time 
grows as the input gets large
• Gives a better characterization of an algo's 

performance

• Can also be applied to the amount of memory used 
by an algo

‒ ("space complexity")
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Example

26

def lookup(str_, list_):
for i in range(len(list_)):

if str_ == list_[i]: 
return i

return -1

Code                               Primitive operations

len(list_) : 1

range( ) : 1

in : 1

for : 2

list_[i] : 1

str_ : 1

== : 1

if : 1

each iteration:
9 primitive ops



Example
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def lookup(str_, list_):
for i in range(len(list_)):

if str_ == list_[i]: 
return i

return -1

Code                               Primitive operations

len(list_) : 1

range( ) : 1

in : 1

for : 2

list_[i] : 1

str_ : 1

== : 1

if : 1

each iteration:
9 primitive ops

Total primitive ops executed:
1 iteration: 9 ops

\ n iterations: 9n ops
+ return at the end: 1 op

\ total worst-case running time for a list of length n is 9n + 1



ICA-29- p.3 a)
# What is the total worst-case running time of the 
following code fragment expressed in terms of n?

for i in range(n):
k = 2 + 2
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ICA-29-p3 b)
# What is the total worst-case running time of the 
following code fragment expressed in terms of n?

a = 5
b = 10
for i in range(n):

x = i * b
for j in range(n):

z += b
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asymptotic complexity
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Asymptotic complexity
• In the worst-case, lookup(str_, list_) executes 9n + 1 

primitive operations given a list of length n
• To translate this to running time: 

‒ suppose each primitive operation takes k time units
‒ then worst-case running time is (9n + 1)k

• But k depends on specifics of the computer, e.g.:
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Asymptotic complexity
• In the worst-case, lookup(str_, list_) executes 9n + 1 

primitive operations given a list of length n
• To translate this to running time: 

‒ suppose each primitive operation takes k time units
‒ then worst-case running time is (9n + 1)k

• But k depends on specifics of the computer, e.g.:
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Processor speed k running time

slow 20 180n + 20

medium 10 90n + 10

fast 3 27n + 3



Asymptotic complexity

33

depends on processor-
specific characteristics

depends on how the 
algorithm processes data

worst case running time = An + B



Asymptotic complexity 
• For algorithm analysis, we focus on how the 

running time grows as a function of the input size n
‒ usually, we do not look at the exact worst case running 

time 
‒ it's enough to know proportionalities

• E.g., for the lookup() function:
‒ executes 9n + 1 primitive operations given a list of 

length n
‒ we say only that its running time is "proportional to the 

input length n"
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Example

def list_positions(list1, list2):
positions = []
for value in list1:

idx = lookup(value, list2)
positions.append(idx)

return positions

35

Code                                     Primitive operations



Example

def list_positions(list1, list2):
positions = []
for value in list1:

idx = lookup(value, list2)
positions.append(idx)

return positions
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in : 1

for : 2

1

Code                                     Primitive operations

9n + 1

1

1

iterates 
n times

Worst case behavior:
primitive operations  = n(9n + 5) + 2 = 9n2 + 5n + 2
running time =  k(9n2 + 5n + 2)



Example

def list_positions(list1, list2):
positions = []
for value in list1:

idx = lookup(value, list2)
positions.append(idx)

return positions
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Code                                     Primitive operations

Worst case: 9n2 + 5n + 2 

As n grows, the 9n2 term grows faster than 5n+2
Þ for large n, the n2 term dominates
Þ running time depends primarily on n2



Example 
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9n2
9n2 + 5n + 2

9n2
9n2 + 5n + 2

9n2
9n2 + 5n + 2

As n grows larger, the n2 term dominates
Þ the contribution of the other terms 

becomes insignificant



Example 2: 2x2 + 15x + 10
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2x2 + 15x + 10

2x2

2x2 + 15x + 10

2x2

2x2 + 15x + 10
2x2



Example 3: x3 + 100x2 + 100x + 100
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x3 + 100x2 + 100x + 100

x3

x3 + 100x2 + 100x + 100

x3x3 + 100x2 + 100x + 100
x3

x3 + 100x2 + 100x + 100
x3



Growth rates
• As input size grows, the fastest-growing term 

dominates the others
‒ the contribution of the smaller terms becomes negligible
‒ it suffices to consider only the highest degree (i.e., fastest 

growing) term 

• For algorithm analysis purposes, the constant factors 
are not useful

‒ they usually reflect implementation-specific features
‒ to compare different algorithms, we focus only on 

proportionality 
Þ ignore constant coefficients
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Comparing algorithms
Worst case: 9n +1
Growth rate µ n

Worst case: 9n2 + 5n + 2
Growth rate µ n2
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def lookup(str_, list_):
for i in range(len(list_)):

if str_ == list_[i]: 
return i

return -1

def list_positions(list1, list2):
positions = []
for value in list1:

idx = lookup(value, list2)
positions.append(idx)

return positions



Exercise - Whiteboard 
A piece of code executes the following number of 
primitive operations:

10n2 + 8n + 5

What is its running time proportional to?

Why can we ignore the constants and lower-order 
terms?
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big-O notation
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Big-O notation

• Big-O formalizes this intuitive idea:
‒ consider only the dominant term 

o e.g., 9n2 + 5n + 2  » n2

‒ allows us to say,
"the algorithm runs in time proportional to n2"
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Big-O notation

Intuition:
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When we say… …we mean
"f(n) is O(g(n))"   "f is growing at most as fast as g"

"big-O notation"



Definition: Let f(n) and g(n) be functions mapping 
positive integers to positive real numbers. 

Then,  f(n) is O(g(n))  if there is a real constant c and 
an integer constant n0 ³ 1 such that

f(n) £ cg(n) for all n > n0

Big-O notation
• Captures the idea of the growth rate of functions, 

focusing on proportionality and ignoring constants 
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Big-O notation
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f(n) is O( g(n) )  if there is a real constant c and an integer 
constant n0 ³ 1 such that  f(n) £ c g(n) for all n > n0

“Once the input gets big enough, 
cg(n) is (always) larger than f(n)”



Big-O notation: properties
• If g(n) is growing faster 

than f(n):
‒ f(n) is O(g(n))
‒ g(n) is not O(f(n))

• If f(n) = a0 + a1n + ... + aknk, 
then:

f(n) = O(nk)

‒ i.e., coefficients and lower-
order terms can be ignored
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g(n)

f(n)



Big-O notation

Growth rate µ n
O(n)

Growth rate µ n2

O(n2)
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def lookup(str_, list_):
for i in range(len(list_)):

if str_ == list_[i]: 
return i

return -1

def list_positions(list1, list2):
positions = []
for value in list1:

idx = lookup(value, list2)
positions.append(idx)

return positions



Some common growth-rate curves
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O(log n)

O(n)

O(n log(n))

O(n2)

O(n3)



Computing big-O complexities
Given the code:

line1 ... O(f1(n))
line2 ... O(f2(n))
...
linek ... O(fk(n))

The overall complexity is 

O(max(f1(n), fs(n), ..., fk(n)))

Given the code

loop  ... O(f1(n)) iterations
line1    ... O(f2(n))

The overall complexity is

O( f1(n) x f2(n) )
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using big-O notation
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Using big-O notation 

Code

str_ == list_[i]

Big-O complexity

O(1)
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O(1)O(1)

O(1)



Using big-O notation 

Code

if str_ == list_[i]: 
return i

Big-O complexity

O(1)

56

O(1)

O(1)

O(1)



Using big-O notation 

Code Big-O complexity

O(n)
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for i in range(len(list_)):
if str_ == list_[i]: 

return i

O(1)O(n)   (worst-case)
(n = length of the list)



Using big-O notation 

Code Big-O complexity

O(n)
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def lookup(str_, list_):
for i in range(len(list_)):

if str_ == list_[i]: 
return i

return -1
O(n)

O(1)



Using big-O notation 

Code Big-O complexity

O(n2)
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def list_positions(list1, list2):
positions = []
for value in list1:

idx = lookup(value, list2)
positions.append(idx)

return positions O(n)   (worst-case)
(n = length of list2)

O(n)   (worst-case)
(n = length of list1)



Using big-O notation 

Code Big-O complexity
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def list_positions(list1, list2):
positions = []
for value in list1:

idx = lookup(value, list2)
positions.append(idx)

return positions

O(n2)

O(1)



Using big-O notation 

Code Big-O complexity

O(n2)
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def list_positions(list1, list2):
positions = []
for value in list1:

idx = lookup(value, list2)
positions.append(idx)

return positions

O(n2)

O(1)



Review (whiteboards)
A piece of code executes the following number of 
primitive operations:

10n2 + 8n + 5

What is its running time proportional to?

Why can we ignore the constants and lower-order 
terms?

What is the big-O notation for this code?
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Review (whiteboards)
A piece of code executes the following number of 
primitive operations:

10n2 + 8n + 5
What is its running time proportional to?
n2

Why can we ignore the constants and lower-order 
terms?
Because the highest order term (n2 ) dominates as n 
grow larger
What is the big-O notation for this code?
O(n2)
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EXERCISE
# my_rfind(mylist, elt) : find the distance from the      
# end of mylist where elt occurs, -1 if it does not
def my_rfind(mylist, elt):

pos = len(mylist) ‒ 1                     
while pos >= 0:

if mylist[pos] == elt:
return pos

pos -= 1
return -1

65

Worst-case big-O complexity = ???



EXERCISE
# my_rfind(mylist, elt) : find the distance from the      
# end of mylist where elt occurs, -1 if it does not
def my_rfind(mylist, elt):

pos = len(mylist) ‒ 1                O(1)     
while pos >= 0:                         O(n) 

if mylist[pos] == elt:                 O(1)
return pos                           O(1)

pos -= 1                                     O(1)
return -1                                     O(1)
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Worst-case big-O complexity = O(n)



EXERCISE
# for each element of a list: find the biggest value      
# between that element and the end of the list
def find_biggest_after(arglist): 

pos_list = []
for idx0 in range(len(arglist)):

biggest = arglist[idx0]
for idx1 in range(idx0+1, len(arglist)):

biggest = max(arglist[idx1], biggest)
pos_list.append(biggest)

return pos_list
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Worst-case big-O complexity = ???



EXERCISE
# for each element of a list: find the biggest value      
# between that element and the end of the list
def find_biggest_after(arglist): 

pos_list = []                                     O(1)
for idx0 in range(len(arglist)):      O(n)

biggest = arglist[idx0]                               O(1)
for idx1 in range(idx0+1, len(arglist)):   O(n)

biggest = max(arglist[idx1], biggest)       O(1)
pos_list.append(biggest)                         O(1)

return pos_list O(1) 

68
Worst-case big-O complexity = O(n2)



EXERCISE
# for each element of a list: find the biggest value      
# between that element and the end of the list
def find_biggest_after(arglist): 

pos_list = []
for idx0 in range(len(arglist)):

biggest = max(arglist[idx0:])   # library code
pos_list.append(biggest)

return pos_list
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Worst-case big-O complexity = O(n2)



Reasoning about efficiency

def sumv1(n):
num = 0
for i in range(1,n+1):

num += i
return num

def sumv2(n):
num = (n*(n+1))/2
return num

71

What is the complexity of each version of sum(n)?



Reasoning about efficiency

def sumv1(n):
num = 0
for i in range(1,n+1):

num += i
return num

def sumv2(n):
num = (n*(n+1))/2
return num
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What is the complexity of each version of sum(n)?
O(n)                                                           O(1)



EXERCISE-ICA30
Do all problems (1 thru 5).
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