CSc 120 Introduction to Computer Programming II

Adapted from slides by Dr. Saumya Debray

09: Efficiency and Complexity

EFFICIENCY MATTERS

Algorithm Analysis

- Objectives
 - Understand why algorithm analysis is important
 - Understand how to reason about performance (or efficiency) of an algorithm
 - Be able to use "Big-O" to describe execution time

reasoning about performance

Consider two different programs that sum the integers from 1 to n

```
def sumv1(n):
    num = 0
    for i in range(1,n+1):
        num += i
    return num
```

How would we compare them to see which is "better"?

```
def sumv1(n):
    num = 0
    for i in range(1,n+1):
        num += i
    return num
```

How would we compare them to see which is "better"? Ideas?

```
def sumv1(n):
    num = 0
    for i in range(1,n+1):
        num += i
    return num
```

EXERCISE-ICA-29 p1

- We could compare the difference in running times:
 - Download sumv1(n)
 - o <u>https://www.obagy.com/cs120/LECTURES/sumv1.py</u>
 - run this for these values of n: 10,000, 100,000, 1,000,000

- Download sumv2 (n)

- o <u>https://www.obagy.com/cs120/LECTURES/sumv2.py</u>
- run this for these values of n: 10,000, 100,000, 1,000,000
- Answer the questions in the ICA

Running Times on Mac 2.8GHz intel Core i7

sumV1 results:

n = 10000	
sum = 50005000 : running time required was	0.0006452 seconds
n = 100000	
sum = 5000050000 : running time required was	0.0072520 seconds
n = 1000000	
sum = 500000500000 : running time required was	0.0804298 seconds
sumV2 results:	
n = 10000	
sum = 50005000 : running time required was	0.0000021 seconds
n = 100000	
sum = 5000050000 : running time required was	0.0000029 seconds
n = 1000000	
sum = 500000500000 : running time required was	0.0000021 seconds

- Observations on sumv1 (n) vs sumv2 (n):
 - For sumv1, as we increase n, the running time increases
 o increases in proportion to n
 - For sumv2, as we increase n, the running time stays the same
- But, execution time depends on many external factors...

- The time taken for a program to run
 - can depend on:
 - processor properties (e.g., CPU speed, amount of memory)
 - what other programs are running (i.e., system load)
 - which inputs we use (some inputs may be worse than others)
- Want to compare different algorithms:
 - without requiring that we implement them both first
 - abstracting away processor-specific details
 - focusing on running time (not memory usage)
 - considering all possible inputs

• Algorithms vs. programs

– Algorithm:

• a step-by-step list of instructions for solving a problem

– Program:

• an algorithm that been implemented in a given language

• We would like to compare different algorithms *abstractly*

Comparing algorithms

- Search for a word my_word in a dictionary (a book)
- A dictionary is sorted
 - Algo 1 (search from the beginning): start at the first word in the dictionary if the word is not my_word, then go to the next word continue in sequence until my_word is found
 - Algo 2:

start at the middle of the dictionary

if ${\tt my_word}$ is greater than the word in the middle,

start with the middle word and continue from

there to the end

if my_word is less than the word in the middle,
 start with the middle word and continue from
 there to the beginning

ICA29-p2

- Which is better, Algo 1 (search from the beginning) or Algo 2 (search from the middle)? What is the reason?
- Regardless of which algorithm that you chose, is there ever a scenario where the other one is better?
- When considering which is better, what measure are we using?

Comparing algorithms

- Call comparison a *primitive* operation
 - an abstract unit of computation
- Characterize an algorithm in terms of:
 - how many primitive operations are performed
 - best case and worst case
- Express this in terms of the size of the data (or size of its input)

Primitive operations

- Abstract units of computation
 - convenient for reasoning about algorithms
 - approximates typical hardware-level operations
- Includes:
 - assigning a value to a variable
 - looking up the value of a variable
 - doing a single arithmetic operation
 - comparing two values
 - accessing a single element of a Python list by index
 - calling a function
 - returning from a function

Primitive ops and running time

- A primitive operation
 - corresponds to a small constant number of machine instructions
- No. of primitive operations executed ∞ no. of machine instructions executed ∞ actual running time

Note: the symbol ∞ means proportional to

Code

Primitive operations

Primitive ops and running time

• We consider how a function's running time depends on the size of its input

- which input do we consider?

```
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
        return -1
```

- Best-case scenario?:
- Worst-case scenario?:

```
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
        return -1
```

- Best-case scenario: str_ == list_[0] # first element
 - loop does not have to iterate over list_ at all
 - running time does not depend on length of list_
 - does not reflect typical behavior of the algorithm

```
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
        return -1
```

- Worst-case scenario: str_ == list_[-1] # last element
 - loop iterates through list_
 - running time is proportional to the length of list_
 - captures the behavior of the algorithm better

```
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
        return -1
```

- In reality, we get something in between
 - but "average-case" is difficult to characterize precisely
- We will consider worst-case inputs
 - can characterize this precisely

Worst-case complexity

- Considers worst-case inputs
- Describes running time of an algo as a function of the size of its input

- ("time complexity")

- Focuses on the *rate* at which the running time grows as the input gets large
- Gives a better characterization of an algo's performance
- Can also be applied to the amount of memory used by an algo
 - ("space complexity")

Code

Primitive operations

Code

Primitive operations

.:. total worst-case running time for a list of length n is 9n + 1

ICA-29- p.3 a)

What is the total worst-case running time of the following code fragment expressed in terms of n?

for i in range(n):

k = 2 + 2

ICA-29-p3 b)

What is the total worst-case running time of the following code fragment expressed in terms of n?

a = 5 b = 10 for i in range(n): x = i * b for j in range(n): z += b asymptotic complexity

Asymptotic complexity

- In the worst-case, lookup(str_, list_) executes 9n + 1 primitive operations given a list of length n
- To translate this to running time:
 - suppose each primitive operation takes k time units
 - then worst-case running time is (9n + 1)k
- But *k* depends on specifics of the computer, e.g.:

Asymptotic complexity

- In the worst-case, lookup(str_, list_) executes 9n + 1 primitive operations given a list of length n
- To translate this to running time:
 - suppose each primitive operation takes k time units
 - then worst-case running time is (9n + 1)k
- But *k* depends on specifics of the computer, e.g.:

Processor speed	k	running time
slow	20	180n + 20
medium	10	90n + 10
fast	3	27n + 3

Asymptotic complexity

- For algorithm analysis, we focus on how the running time grows as a function of the input size *n*
 - usually, we do not look at the <u>exact</u> worst case running time
 - it's enough to know proportionalities
- E.g., for the lookup() function:
 - executes 9n + 1 primitive operations given a list of length n
 - we say only that its running time is "proportional to the input length n"

Code

def list_positions(list1, list2):
 positions = []
 for value in list1:
 idx = lookup(value, list2)
 positions.append(idx)
 return positions

Code

Primitive operations

Worst case behavior:

primitive operations = $n(9n + 5) + 2 = 9n^2 + 5n + 2$ running time = $k(9n^2 + 5n + 2)$

Code

Example 2: $2x^2 + 15x + 10$

Example 3: $x^3 + 100x^2 + 100x + 100$

40

Growth rates

- As input size grows, the fastest-growing term dominates the others
 - the contribution of the smaller terms becomes negligible
 - it suffices to consider only the highest degree (i.e., fastest growing) term
- For algorithm analysis purposes, the constant factors are not useful
 - they usually reflect implementation-specific features
 - to compare different algorithms, we focus only on proportionality
 - ⇒ ignore constant coefficients

Comparing algorithms

Worst case: 9n +1 Growth rate ∞ n

```
def lookup(str_, list_):
    for i in range(len(list_)):
        if str_ == list_[i]:
            return i
        return -1
```

Worst case: $9n^2 + 5n + 2$ Growth rate $\propto n^2$ def list positions(list1, list2): positions = [] for value in list1: idx = lookup(value, list2) positions.append(idx) return positions

Exercise - Whiteboard

A piece of code executes the following number of primitive operations:

 $10n^2 + 8n + 5$

What is its running time proportional to?

Why can we ignore the constants and lower-order terms?

- Big-O formalizes this intuitive idea:
 - consider only the dominant term

○ e.g., $9n^2 + 5n + 2 \approx n^2$

- allows us to say,

"the algorithm runs in time proportional to n²"

Intuition:

• Captures the idea of the growth rate of functions, focusing on proportionality and ignoring constants

Definition: Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

Then, f(n) is O(g(n)) if there is a real constant c and an integer constant $n_0 \ge 1$ such that

 $f(n) \le cg(n)$ for all $n > n_0$

f(n) is O(g(n)) if there is a real constant c and an integer constant $n_0 \ge 1$ such that $f(n) \le c g(n)$ for all $n > n_0$

Big-O notation: properties


```
Growth rate \propto n^2
       Growth rate \infty n
            O(n)
                                                  O(n<sup>2</sup>)
                                      def list positions(list1, list2):
def lookup(str , list ):
                                         positions = []
    for i in range(len(list_)):
        if str == list [i]:
                                         for value in list1:
            return i
                                           idx = lookup(value, list2)
    return -1
                                            positions.append(idx)
                                         return positions
```

Some common growth-rate curves

Computing big-O complexities

Given the code:

 $line_1 \dots O(f_1(n))$ $line_2 \dots O(f_2(n))$ \dots $line_k \dots O(f_k(n))$

The overall complexity is

 $O(max(f_1(n), f_s(n), ..., f_k(n)))$

Given the code

loop ... O(f1(n)) iterations
 line1 ... O(f2(n))

The overall complexity is

 $O(f_1(n) \times f_2(n))$

O(1)

O(1)

O(n)

O(n)

Review (whiteboards)

A piece of code executes the following number of primitive operations:

 $10n^2 + 8n + 5$

What is its running time proportional to?

Why can we ignore the constants and lower-order terms?

What is the big-O notation for this code?

Review (whiteboards)

A piece of code executes the following number of primitive operations:

 $10n^2 + 8n + 5$

What is its running time proportional to?

 n^2

Why can we ignore the constants and lower-order terms?

Because the highest order term (n²) dominates as n grow larger

What is the big-O notation for this code?

O(n²)

```
# my rfind(mylist, elt) : find the distance from the
# end of mylist where elt occurs, -1 if it does not
def my_rfind(mylist, elt):
   pos = len(mylist) - 1
   while pos \ge 0:
        if mylist[pos] == elt:
           return pos
        pos -= 1
                          Worst-case big-O complexity = ???
   return -1
```

my_rfind(mylist, elt) : find the distance from the # end of mylist where elt occurs, -1 if it does not

def my_rfind(mylist, elt):

pos = len(mylist) - 1O(1)while $pos \ge 0$:O(n)if mylist[pos] == elt:O(1)return posO(1)pos -= 1O(1)return -1O(1)

Worst-case big-O complexity = O(n)

```
# for each element of a list: find the biggest value
# between that element and the end of the list
def find_biggest_after(arglist):
   pos list = []
   for idx0 in range(len(arglist)):
      biggest = arglist[idx0]
      for idx1 in range(idx0+1, len(arglist)):
         biggest = max(arglist[idx1], biggest)
      pos list.append(biggest)
   return pos list
                          Worst-case big-O complexity = ???
```

```
# for each element of a list: find the biggest value 
# between that element and the end of the list
```

def find_biggest_after(arglist):

pos_list = []O(1)for idx0 in range(len(arglist)):O(n)biggest = arglist[idx0]O(1)for idx1 in range(idx0+1, len(arglist)):O(n)biggest = max(arglist[idx1], biggest)O(1)pos_list.append(biggest)O(1)return pos_listO(1)

Worst-case big-O complexity = $O(n^2)$

```
# for each element of a list: find the biggest value 
# between that element and the end of the list
```

```
def find_biggest_after(arglist):
```

```
pos_list = []
for idx0 in range(len(arglist)):
    biggest = max(arglist[idx0:]) # library code
    pos_list.append(biggest)
    return pos_list
```

Worst-case big-O complexity = O(n²)

What is the complexity of each version of sum(n)?

```
def sumv1(n):
    num = 0
    for i in range(1,n+1):
        num += i
    return num
```

What is the complexity of each version of sum(n)? O(n) O(1)

```
def sumv1(n):
    num = 0
    for i in range(1,n+1):
        num += i
    return num
```

EXERCISE-ICA30

Do all problems (1 thru 5).