
CSc 120
Introduction to Computer Programming II

Lists (arrays) vs. Linked Lists: Complexity

performance puzzler

2

Example: list insert vs append
insert: adds an element into the
middle of a list

append: adds an element at the
end of a list

3

Example: list insert vs append
insert: adds an element into the
middle of a list
list0 = mklist(n) # length of list0 == n
list0.insert(n//2, 0) # insert at midpoint

append: adds an element at the
end of a list

list0 = mklist(n)
list0.append(0) # add at the end

4

0 2000000 4000000 6000000 8000000 10000000

Ru
n

tim
e

List length
0 2000000 4000000 6000000 8000000 10000000

Ru
n

tim
e

List length
Why this difference?

insert vs. append

9

List (array) organization in Python
• (References to) the list elements

are kept in a contiguous sequence
of memory words

‒ there is a little extra space at the end
to give it some room to grow

• The following operations are O(1):
‒ len()

o read off length info from the header
‒ accessing the ith element of the list

o compute its address using the value of i
o access memory location at that address

10

info about the list

“aaa”

“bbb”

“ccc”

“ddd”

“eee”

“fff”

“ggg”

“hhh”

lis
t e

le
m

en
ts

ex
tr

a
sp

ac
e

he
ad

er

Appending to a list

11

info about the
list

“aaa”

“bbb”

“ccc”

“ddd”

“eee”

“fff”

“ggg”

“hhh”

lis
t e

le
m

en
ts

ex
tr

a
sp

ac
e

L info about the
list

“aaa”

“bbb”

“ccc”

“ddd”

“eee”

“fff”

“ggg”

“hhh”

“qqq”

L

L.append(‘qqq’)

O(1)

Inserting into a list

12

info about the
list

“aaa”

“bbb”

“ccc”

“ddd”

“eee”

“fff”

“ggg”

“hhh”

lis
t e

le
m

en
ts

ex
tr

a
sp

ac
e

L info about the
list

“aaa”

“bbb”

“qqq”

“ccc”

“ddd”

“eee”

“fff”

“ggg”

“hhh”

L

L.insert(2, ‘qqq’)

Inserting into a list

13

info about the
list

“aaa”

“bbb”

“ccc”

“ddd”

“eee”

“fff”

“ggg”

“hhh”

lis
t e

le
m

en
ts

ex
tr

a
sp

ac
e

L info about the
list

“aaa”

“bbb”

“qqq”

“ccc”

“ddd”

“eee”

“fff”

“ggg”

“hhh”

L

L.insert(2, ‘qqq’)

O(n) list
elements have
to be moved
over by one
position

O(n)

Python lists: complexity summary

Operation Complexity

len O(1)

access an element's value O(1)

append O(1)

insert, delete O(n)

14

Q: Can we do insert in O(1) time?
(The complexity of other operations may change)

Exercise-ICA 31 Prob. 1&2

15

Python lists: reprise

16

• Key feature: L[i] and L[i+1] are
adjacent in memory

• This makes accessing L[i] very
efficient

‒ O(1)

• Insertion and concatenation
require moving O(n) elements

‒ O(n)

info about the
list

“aaa”

“bbb”

“ccc”

“ddd”

“eee”

“fff”

“ggg”

“hhh”

lis
t e

le
m

en
ts

ex
tr

a
sp

ac
e

he
ad

er

Linked lists: reprise
• To get O(1) insertion and

concatenation, we cannot afford to
move O(n) list elements
• We have to relax the requirement

that ith element is adjacent to
(i+1)st element

‒ any element can be anywhere in
memory

• Each element has to tell us where
to find the next element

17

"aaa"

"ccc"

"bbb"

…
…

…
…

memory

Linked lists
With each element of the list, keep a reference to the
next list element

18

"aaa" "bbb" "ccc" "ddd"

L

next nextnextnext

"nodes" each node in the
list has a reference
to the next node

Linked lists
References are addresses in memory.
Here is the diagram with explicit addresses (simplified).

19

"aaa"

432

"bbb"

64

"ccc"

132
"ddd"

None

L

next nextnextnext

address 432address 96 address 64 address 13296

Insertion
Consider inserting a new node into the linked list

20

"aaa"

432

"bbb"

64

"ccc"

132
"ddd"

None

L

next nextnextnext

address 432address 96 address 64 address 13296

Insertion
Specifically, add a new node between "bbb" and
"ccc". What do we change?

21

"aaa"

432

"bbb"

64

"ccc"

132
"ddd"

None

L

next nextnextnext

address 432address 96 address 64 address 13296

"qqq"
next

address 500

Insertion
Specifically, add a new node between "bbb" and
"ccc". What do we change?

22

"aaa"

432

"bbb"

64

"ccc"

132
"ddd"

None

L

next nextnextnext

address 432address 96 address 64 address 13296

"qqq"

64next

address 500

Insertion
We want to add a new node between "bbb" and
"ccc". What do we change?

23

"aaa"

432

"bbb"

500

"ccc"

132
"ddd"

None

L

next nextnextnext

address 432address 96 address 64 address 13296

"qqq"

64next

address 500

Insertion
Set the next references appropriately. What is the
complexity of insertion?

24

"aaa" "bbb" "ccc" "ddd"

None

L

next nextnextnext

"qqq"
next

O(1)*

*assuming we have a reference to
the node of insertion

Insertion
To insert an element (which can be a linked list) into
a linked list: set next references appropriately

25

"aaa" "bbb" "ccc" "ddd"

None

L

next nextnextnext

"qqq"
next

"sss"
next

"rrr"
next

O(1)

M

Insertion
To insert an element into a linked list: set next
references appropriately

26

"aaa" "bbb" "ccc" "ddd"

None

L

next nextnextnext

"qqq"
next

"sss"
next

"rrr"
next

O(1)

Insertion
To insert an element into a linked list: set next
references appropriately

27

"aaa" "bbb" "ccc" "ddd"

None

L

next nextnextnext

"qqq"
next

"sss"
next

"rrr"
next

O(1)*

*assuming we have a reference to
the node of insertion

Concatenation
To concatenate two linked lists: set next reference of
end of first list to refer to beginning of second list

28

"aaa" "bbb" "ccc" "ddd"

L

next nextnextnext

"qqq"
next

"sss"

Nonenext

"rrr"
next

* once we have a reference to the
end of the first list

O(1)*

addition
at the head of the list

29

Adding a node at the head
class LinkedList:

def __init__(self):
self._head = None

add a node new at the head of the linked list
def add(self, new):

new._next = self._head
self._head = new

30

O(1)

Visiting each element
class LinkedList:

def __init__(self):
self._head = None

....

def print_elements(self):
current = self._head
while current != None:

print(str(current._value))
current = current._next

31

O(n)

adding to the
end (tail) of the list

32

Adding a node to the tail
To add a node new at the end (i.e., tail) of a list L:

1. find the last element Y of L
2. Y._next = new

33

Adding a node to the tail
To add a node new at the end (i.e., tail) of a list L:

1. find the last element Y of L
2. Y._next = new

34

O(n)
O(1)

Adding to the end
class LinkedList:

def add_to_end(self, new):
if self._head == None: # the list is empty

self._head = new # the list now has one node
else:

current = self._head
prev = None
while current != None:

prev = current # keep track of previous node
current = current._next

prev._next = new # add to the end

35

O(n)

finding the nth element

36

Finding the nth element
class LinkedList:

return the node at position n of the linked list
def get_element(self, n):

elt = self._head
while elt != None and n > 0:

elt = elt._next
n ‒= 1

return elt

37

O(n)

insertion

38

Inserting a node
Suppose we want to insert a node X into a list here:

39

"aaa" "bbb" "ccc"

"ddd"
X

……

Then we have to adjust the next-node reference on
the node Y just before that position

Y

Inserting a node
Suppose we want to insert a node X into a list here:

40

"aaa" "bbb" "ccc"

"ddd"
X

……

Then we have to adjust the next-node reference on
the node Y just before that position

Y

Inserting a node
Inserting a node X at
position n in a list L:
1. find the node Y at

position n‒1
‒ iterate n‒1 positions

from the head of the list*

2. insert X after Y
‒ adjust next-node

references as in previous
example

Y = L._head
for i in range(n-1):

Y = Y._next

X._next = Y._next
Y._next = X

41

* do something sensible if the list has
fewer than n-1 nodes

O(n)

O(1)

Inserting a node
class LinkedList:

insert a node new at position n
def insert(self, new, n):

if n == 0:
self.add(new)

else:
prev = self.get_element(n‒1)
new.next = prev.next
prev.next = new

42

O(n)

deletion

43

Deleting a node
Suppose we want to delete this node:

44

"aaa" "bbb" "ccc"

X

……

Deleting a node
Suppose we want to delete this node:

45

"aaa" "bbb" "ccc"

X

…… X

Deleting a node
Suppose we want to delete this node:

46

"aaa" "bbb" "ccc"

X

…… X

1. find the node Y just before X
(i.e., Y._next == X)

2. Y._next = X._next
3. X._next = None

Y

O(n)
O(1)

Deleting a node
class LinkedList:

delete a node X
def delete(self, X):

if self._head == X: O(1)
self._head = X._next

else:
Y = self._head
while Y._next != X: O(n)

Y = Y._next
Y._next = X._next

X.next = None
47

Remove from the front
Removing from the front is simpler:

48

"aaa" "bbb" "ccc"

None

L

Removing a node from the front
Removing from the front is simpler:

49

"aaa" "bbb" "ccc"

None

L

X

O(1)

concatenation

50

Exercise-ICA 31 Prob. 3
class LinkedList:

concatenate list2 at the end of the list
def concat(self, list2):

51

maintaining a tail
reference

53

Maintaining a tail reference
A variation is to also maintain a reference to the tail
of the list

54

LinkedList class LinkedList:
def __init__(self):

self._head = None
self._tail = None

_head
_tail

Tail references and concatenation

55

list1

_head
_tail

list2 _head
_tail

“aa” “cc”“bb”

“dd” “ff”“ee”

Tail references and concatenation

56

list1

_head
_tail

list2 _head
_tail

“aa” “cc”“bb”

“dd” “ff”“ee”

Tail references and concatenation

57

list1

_head
_tail

list2 _head
_tail

“aa” “cc”“bb”

“dd” “ff”“ee”

Tail references and concatenation

58

list1

_head
_tail

list2 _head
_tail

“aa” “cc”“bb”

“dd” “ff”“ee”

Maintaining a tail reference
• Concatenation and append become O(1):

def concat(self, list2):
if self._head == None:

self._head = list2._head
self._tail = list2._tail

else:
self._tail._next = list2._head
self._tail = list2._tail

• All linked list operations must now make sure that
the tail reference is kept properly updated

59

Exercise-ICA-32, p.1-3
Given the following LinkedList definition:

60

LinkedList class LinkedList:
def __init__(self):

self._head = None
self._tail = None

_head
_tail

Write the append(self, new) method for the class.

Linked lists: summary
Operation Without tail reference With tail reference

add to front of list O(1)

append to end of list O(n) O(1)

find nth element O(n)

insert O(1) if prev. node is available
O(n) otherwise

delete O(1) if prev. node is available
O(n) otherwise

concatenate O(n) O(1)

61

Some common growth-rate curves

62

O(log n)

O(n)

O(n log(n))

O(n2)

O(n3)

