
CSc 120
Introduction to Computer Programming II

Debugging

Some warmup exercises

2

Source code

compute the sum of the elements

of a list L

def sumlist(L):

print("Entered sumlist")

sum = 0

i = 0

while i < len(L):

sum += L[i]

print("Leaving sumlist")

return sum

Execution behavior

>>> sumlist([1,2,3,4])

Entered sumlist

3

Exercise 1

What’s the problem?

compute the sum of the elements

of a list L

def sumlist(L):

print("Entered sumlist")

sum = 0

i = 0

while i < len(L):

sum += L[i]

print("Leaving sumlist")

return sum

Source code The Problem

>>> sumlist([1,2,3,4])

Entered sumlist

4

Exercise 1

infinite loop

compute the sum of the elements

of a list L

def sumlist(L):

print("Entered sumlist")

sum = 0

i = 0

while i < len(L):

sum += L[i]

print("Leaving sumlist")

return sum

Source code The Problem

>>> sumlist([1,2,3,4])

Entered sumlist

5

Exercise 1

infinite loop

because this statement is
not executing as intended

compute the sum of the elements

of a list L

def sumlist(L):

print("Entered sumlist")

sum = 0

i = 0

while i < len(L):

sum += L[i]

print("Leaving sumlist")

return sum

Source code The Problem

>>> sumlist([1,2,3,4])

Entered sumlist

6

Exercise 1

infinite loop

because this statement is
not executing as intended

because this variable is not
being updated correctly

compute the sum of the elements

of a list L

def sumlist(L):

print("Entered sumlist")

sum = 0

i = 0

while i < len(L):

sum += L[i]

print("Leaving sumlist")

return sum

Source code The Problem

>>> sumlist([1,2,3,4])

Entered sumlist

7

Exercise 1

infinite loop

because this statement is
not executing as intended

because this variable is not
being updated correctly

immediate cause

root cause

Source code

compute the sum of the elements

of a list L

def sumlist(L):

print("Entered sumlist")

sum = 0

i = 0

while i < len(L):

i += 1

sum += L[i]

print("Leaving sumlist")

return sum

Execution behavior

>>> sumlist([1,2,3,4])

Entered sumlist

File "sumlist.py", line 9

sum += L[i]

IndexError: list index out of range

8

Exercise 2

What’s the problem?

1

2

3

4

5

6

7

8

9

10

11

compute the sum of the elements

of a list L

def sumlist(L):

print("Entered sumlist")

sum = 0

i = 0

while i < len(L):

i += 1

sum += L[i]

print("Leaving sumlist")

return sum

Source code The Problem

>>> sumlist([1,2,3,4])

Entered sumlist

File "sumlist.py", line 9

sum += L[i]

IndexError: list index out of range

9

Exercise 2

1

2

3

4

5

6

7

8

9

10

11

Step 1: Use error message to
locate and identify the problem
• line number
• type of error

compute the sum of the elements

of a list L

def sumlist(L):

print("Entered sumlist")

sum = 0

i = 0

while i < len(L):

i += 1

sum += L[i]

print("Leaving sumlist")

return sum

Source code The Problem

>>> sumlist([1,2,3,4])

Entered sumlist

File "sumlist.py", line 9

sum += L[i]

IndexError: list index out of range

10

Exercise 2

this value is incorrect

1

2

3

4

5

6

7

8

9

10

11

compute the sum of the elements

of a list L

def sumlist(L):

print("Entered sumlist")

sum = 0

i = 0

while i < len(L):

i += 1

sum += L[i]

print("Leaving sumlist")

return sum

Source code The Problem

>>> sumlist([1,2,3,4])

Entered sumlist

File "sumlist.py", line 9

sum += L[i]

IndexError: list index out of range

11

Exercise 2

this value is incorrect

because the order of these
statements is incorrect

1

2

3

4

5

6

7

8

9

10

11

compute the sum of the elements

of a list L

def sumlist(L):

print("Entered sumlist")

sum = 0

i = 0

while i < len(L):

i += 1

sum += L[i]

print("Leaving sumlist")

return sum

Source code The Problem

>>> sumlist([1,2,3,4])

Entered sumlist

File "sumlist.py", line 9

sum += L[i]

IndexError: list index out of range

12

Exercise 2

this value is incorrect

because the order of these
statements is incorrect

immediate cause

root cause

1

2

3

4

5

6

7

8

9

10

11

Bugs: “immediate” vs. “root” cause

13

Often, buggy behavior observed in
one piece of code arises due to a
problem in some other piece of code.

x = 0
y = 1

z = y/x

Bugs: “immediate” vs. “root” cause

14

Often, buggy behavior observed in
one piece of code arises due to a
problem in some other piece of code.

‒ the place where buggy behavior is
observed: immediate cause

x = 0
y = 1

z = y/x
divide by zero

Bugs: “immediate” vs. “root” cause

15

Often, buggy behavior observed in
one piece of code arises due to a
problem in some other piece of code.

‒ the place where buggy behavior is
observed: immediate cause

x = 0
y = 1

z = y/x
divide by zero

− the code that gave rise to that
behavior: root cause

Immediate vs. root cause

16

Bugs: “immediate” vs. “root” cause

• “Immediate cause” : the most recently executed code
that resulted in the problem showing up

• “Root cause” : the actual problem in the code that led
to the immediate cause

17

Examples
Immediate cause

(what you see)

Root cause
(what you figure out)

Exercise 1
infinite loop:

while loop does not terminate
the variable i is not being
updated correctly

Exercise 2
array index out of bounds:

variable i has incorrect value
order of statements is incorrect

Bugs: “immediate” vs. “root” cause

The root cause for a
problem may itself be
due to a bug somewhere
else in the code

18

if expr :
v = …

else:
v = []

z = y/x

x = len(v)
y = 1

Bugs: “immediate” vs. “root” cause

The root cause for a
problem may itself be
due to a bug somewhere
else in the code

19

if expr :
v = …

else:
v = []

z = y/x

buggy1

x = len(v)
y = 1

Bugs: “immediate” vs. “root” cause

The root cause for a
problem may itself be
due to a bug somewhere
else in the code

20

if expr :
v = …

else:
v = []

x = len(v)
y = 1

z = y/x

buggy1

wrong
value

2

Bugs: “immediate” vs. “root” cause

The root cause for a
problem may itself be
due to a bug somewhere
else in the code

21

if expr :
v = …

else:
v = []

x = len(v)
y = 1

z = y/x

buggy1

wrong
value

wrong
value

2

3

Bugs: “immediate” vs. “root” cause

The root cause for a
problem may itself be
due to a bug somewhere
else in the code

22

if expr :
v = …

else:
v = []

x = len(v)
y = 1

z = y/x

buggy1

wrong
value

wrong
value

divide
by 0

2

3

4

Bugs: “immediate” vs. “root” cause

The root cause for a
problem may itself be
due to a bug somewhere
else in the code

‒ to fix the bug, we have
to work back to figure
out where the problem
began

23

if expr :
v = …

else:
v = []

x = len(v)
y = 1

z = y/x

buggy1

wrong
value

wrong
value

divide
by 0

D
EB

U
G

G
IN

G

2

3

4

Source code

def average(L):

return sum(L)/len(L)

def main():

L = …some computation…

avg = average(L)

print(avg)

Execution behavior

>>> main()

File "average.py", line 2

return sum(L)/len(L)

ZeroDivisionError: division by zero

24

Exercise 3

1. What’s the problem?

2. What’s the immediate cause?

3. What’s the root cause?

def average(L):

return sum(L)/len(L)

def main():

L = …some computation…

avg = average(L)

print(avg)

Source code The Problem

>>> main()

File "average.py", line 2

return sum(L)/len(L)

ZeroDivisionError: division by zero

25

Exercise 3

Problem: divide-by-zero error

def average(L):

return sum(L)/len(L)

def main():

L = …some computation…

avg = average(L)

print(avg)

Source code The Problem

>>> main()

File "average.py", line 2

return sum(L)/len(L)

ZeroDivisionError: division by zero

26

Exercise 3

Problem: divide-by-zero error

because L == []

immediate cause

def average(L):

return sum(L)/len(L)

def main():

L = …some computation…

avg = average(L)

print(avg)

Source code The Problem

>>> main()

File "average.py", line 2

return sum(L)/len(L)

ZeroDivisionError: division by zero

27

Exercise 3

Problem: divide-by-zero error

because L == []

because this computation
returned an empty list

immediate cause

root cause

Source Code

def write_to_file(fname, data):

if not fname.endswith(".txt"):

fname += ".txt"

fname.write(data)

Execution behavior

>>> write_to_file("myfile", [1,2,3])

File "myprog.py", line 8

fname.write(data)

AttributeError: 'str' object has no
attribute 'write'

28

EXERCISE

1. What’s the problem?

2. What’s the immediate
cause?

3. What’s the root cause?

QUESTION:

The debugging process

29

The debugging process

30

fix the problem

immediate
cause

root cause figure out what caused the problem

locate the problem
understand what happened and why

working
backward

observe incorrect behavior (bug)

• If we had infinite time, debugging would be easy(er)
‒ but we don't

• Effective debugging ≡ finding and fixing bugs quickly

• Programs that need debugging often:
‒ involve a lot of code
‒ process a lot of data
‒ use complex logic
‒ (some or all of the above)

• Effective debugging minimizes the amount of search
necessary

Effective debugging

31

searching through all this is
what makes debugging
difficult and time-consuming

The debugging process

32

fix the problem

immediate
cause

root cause figure out what caused the problem

locate the problem
understand what happened and why

working
backward

observe incorrect behavior (bug)

find the smallest input that will trigger the bug

Shrinking the input

Goal: find the smallest* input that triggers the same bug
‒ we can do this mechanically

Idea: Identify and get rid of computation that is irrelevant
to the bug we're working on

‒ It's important that the smaller input trigger the same bug
as the original input

33

* In practice, we usually stop when the input is small enough to be
"manageable" and/or when we've spent enough time

A program P that reads in and processes a data file
‒ P gives a divide-by-zero error on line 513 when run on an

input file F containing 100,000 data items

‒ we divide F into several pieces and run P on each:
• input F1 (12,000 items)  index-out-of-bounds error on line 602

• input F2 (32,000 items)  divide-by-zero error on line 676

• input F3 (51,000 items)  divide-by-zero error on line 513

• input F4 (35,000 items)  no errors

Question: which of these inputs is acceptable for
debugging the original problem? Why?

34

EXERCISE

A program P that reads in and processes a data file
‒ P gives a divide-by-zero error on line 513 when run on an

input file F containing 100,000 data items

‒ we divide F into several pieces and run P on each:
• input F1 (12,000 items)  index-out-of-bounds error on line 602

• input F2 (32,000 items)  divide-by-zero error on line 676

• input F3 (51,000 items)  divide-by-zero error on line 513

• input F4 (35,000 items)  no errors

35

SOLUTION

The smaller input should give the same error in the same place in
the code

→

We have a program P that reads in a data file and
computes something about the data

36

EXERCISE

‒ P gives a divide-by-zero error on
line 513 an input file F containing
100,000 data items

‒ we divide F into two halves F1
and F2

‒ we find that P works fine on both
F1 and F2

F1:
50,000

data
items

F2:
50,000

data
items

F:
100,000
data items

Question: What can we do to shrink
the input?

Understanding bugs

37

Kinds of bugs

38

control related

Statements are not
executed in the right
order

Data values are not
correct

data related

bug

I. Control-related bugs

39

Identifying control-related bugs
Problem: program statements are executed when they
shouldn’t, or not executed when they should.

Check: Is the problem due to any of:

‒ code getting executed when it shouldn’t?

‒ code not getting executed when it should?

‒ code getting executed in the wrong order?

40

Identifying control-related bugs
Problem: program statements are executed when they
shouldn’t, or not executed when they should.

Check: Is the problem due to any of:

‒ code getting executed when it shouldn’t?

‒ code not getting executed when it should?

‒ code getting executed in the wrong order?

How?
‒ add print statements to your code to see which statements

are being executed and in what order

41

Source Code

def write_to_file(fname, data):

if not fname.endswith(".txt"):

fname += ".txt"

f = open(fname, "w")

f.write(data)

Execution behavior

>>> write_to_file("myfile.txt", [1,2,3])

Problem: nothing is written out

42

EXERCISE

• Is this a control-related bug or a data-related bug?

• Why?

QUESTION:

Source Code Execution behavior

>>> count_vowels("Apple")

1

43

EXERCISE

VOWELS = "aeiou"

count the no. of vowels in string

count_vowels(string):

count = 0

for letter in string:

if letter in VOWELS:

count += 1

return count

• Is this a control-related bug or a data-
related bug?

• Why?

• What is the immediate cause?

• What is the root cause?

QUESTION:

Control-related bugs

Problem: program statements are executed when they
shouldn’t, or not executed when they should.

44

Infinite loop

i = 0
while i < len(L):

sum += L[i]

• The loop body is executing when it
shouldn’t (infinitely)

• The statement after the loop is not
getting executed

L == [] ⇒ Divide-by-0 exception

def average(L):
return sum(L)/len(L)

• the expression in the return
statement is getting evaluated
when it shouldn’t

Control-related bugs

Common* reason: incorrect data values
‒ e.g., for expressions that control if- or while- statements

45

Infinite loop

i = 0
while i < len(L):

sum += L[i]

• The values for this expression are
incorrect

‒ it doesn’t become False when it
should

‒ reason: the values of i are incorrect

L == [] ⇒ Divide-by-0 exception

def average(L):
return sum(L)/len(L)

• The division operation is performed
even if the value of len(L) is bad

* common ≠ universal

Control-related bugs: causes

Common* cause: incorrect data values
‒ e.g., for expressions that control if- or while- statements

46

Infinite loop

i = 0
while i < len(L):

sum += L[i]

• The values for this expression are
incorrect

‒ it doesn’t become False when it
should

‒ reason: the values of i are incorrect

L == [] ⇒ Divide-by-0 exception

def average(L):
return sum(L)/len(L)

• The division operation is performed
even if the value of len(L) is bad

* common ≠ universal

immediate cause: control-related

Control-related bugs: causes

Common* cause: incorrect data values
‒ e.g., for expressions that control if- or while- statements

47

Infinite loop

i = 0
while i < len(L):

sum += L[i]

• The values for this expression are
incorrect

‒ it doesn’t become False when it
should

‒ reason: the values of i are incorrect

L == [] ⇒ Divide-by-0 exception

def average(L):
return sum(L)/len(L)

• The division operation is performed
even if the value of len(L) is bad

* common ≠ universal

immediate cause: control-related

root cause: data-related

Debugging Control-related bugs

When the immediate cause of a bug is control-related,
i.e.:

‒ code is being executed when it shouldn’t, or

‒ not being executed when it should:

• Check the culprit code to figure out which variables
control whether or not it gets executed

• Ask whether the values of these variables are causing
the culprit code to:

‒ being executed when it shouldn’t; or

‒ the culprit code to not being executed when it should

48

Source Code Execution behavior

>>> count_vowels("Apple")

1

49

EXERCISE

VOWELS = "aeiou"

count the no. of vowels in string

count_vowels(string):

count = 0

for letter in string:

if letter in VOWELS:

count += 1

return count

• Where should we add print() statements
to figure out what's going on?

• Why?

QUESTION:

Source Code

def f(x):
... body of function f …

def g(x):
… body of function g …

def h(x):
… body of function h …

def main():
u = f(1)
v = g(u)
w = h(v)
print(w)

Execution behavior

>>> main()

50

EXERCISE

1. What do you think might be
the problem?

2. How can we identify the
immediate cause?

QUESTION:

 nothing happens

Source Code

def f(x):
... body of function f …

def g(x):
… body of function g …

def h(x):
… body of function h …

def main():
w = h(g(f(1)))
print(w)

Execution behavior

>>> main()

51

EXERCISE

1. What do you think might be
the problem?

2. How can we identify the
immediate cause?

QUESTION:

 nothing happens

Kinds of bugs

52

control related

Order of execution of
code is not correct

Data values are not
correct

data related

bug

common
reason

Kinds of bugs

53

control related

Order of execution of
code is not correct

Data values are not
correct

data related

bug

common
reason

we will focus on this

II. Data-related bugs

54

Identifying data-related bugs

Problem: variables or expressions have the wrong value

Check: Is the problem due to any of:

‒ a variable or expression having the wrong value?

‒ a function being called with wrong argument values?

55

Problem: variables or expressions have the wrong value

Check: Is the problem due to any of:

‒ a variable or expression having the wrong value?

‒ a function being called with wrong argument values?

How?

• for each variable/expression x we want to investigate:
‒ figure out how to tell whether or not it has the right value

‒ print the value of x at (i.e., just before) the problem point
and check whether it has the right value

Identifying data-related bugs

56

Identifying data-related bugs

Problem: variables or expressions have the wrong value

Check: Is the problem due to any of:

‒ a variable or expression having the wrong value?

‒ a function being called with wrong argument values?

How?

• for each variable/expression x we want to investigate:
‒ figure out how to tell whether or not it has the right value

‒ print the value of x at (i.e., just before) the problem point
and check whether it has the right value

57

IMPORTANT!

>>> print_last_names("myfile")

@@ Asimov

@@ Heinlein

@@ Le

@@ Willis

Source Code

Each line of infile is: first name
followed by last name
def print_last_names(infile):

f = open(infile)
for line in f:

name = line.split()
last_name = name[1]
print(“@@ " + last_name)

f.close()

Execution behavior

58

EXERCISE

• Is this a control-related bug or a data-related bug?

• Why?

Problem: there is
no name in the
input file with last
name ‘Le’
(there is, however,
the name
‘Ursula Le Guin’)

QUESTION:

Source code

compute the sum of the elements

of a list L

def sumlist(L):

sum = 0

i = 0

while i < len(L):

i += 1

sum += L[i]

return sum

Execution behavior

>>> sumlist([1,2,3,4])

"Entered sumlist"

File "sumlist.py", line 9

sum += L[i]

IndexError: list index out of range

59

EXERCISE

• Is this a control-related bug or a data-related bug?

• Why?

QUESTION:

Data-related bugs: causes

60

y = some_expr(x)

The value of
an expression
is incorrect
here (data-
related bug)

Possible Causes

Data-related bugs: causes

61

y = some_expr(x)

The value of
an expression
is incorrect
here (data-
related bug)

Possible Causes

1. the expression is wrong;

Data-related bugs: causes

62

y = some_expr(x)

The value of
an expression
is incorrect
here (data-
related bug)

x = …

x is last
assigned
a value here

Possible Causes

1. the expression is wrong;
or

2. the expression is right,
but an operand x is
assigned the wrong
value; or

Data-related bugs: causes

63

y = some_expr(x)

The value of
an expression
is incorrect
here (data-
related bug)

x = …

x is last
assigned
a value here

Possible Causes

1. the expression is wrong;
or

2. the expression is right,
but an operand x is
assigned the wrong
value here; or

3. x is assigned the right
value, but this is
accidentally overwritten
somewhere later

Source Code

Each line of infile is: first name
followed by last name
def print_last_names(infile):

f = open(infile)
for line in f:

name = line.split()
last_name = name[1]
print("@@ " + last_name)

f.close()

64

EXERCISE
Possible causes

1. the expression is incorrect;

2. the expression is OK, but some
operand was assigned the wrong
value;

3. the expression is OK, its operands were
assigned the right values, but some
value got overwritten.

Which of these best describes the
cause of this bug?

QUESTION:

Problem: prints out the last name
‘Le’ for the input ‘Ursula Le Guin’

Source Code

65

EXERCISE
Possible causes

1. the expression is incorrect;

2. the expression is OK, but some
operand was assigned the wrong
value;

3. the expression is OK, its operands were
assigned the right values, but some
value got overwritten.

Which of these best describes the
cause of this bug?

QUESTION:

compute the sum of the elements
of a list L
def sumlist(L):

sum = 0
i = 0
while i < len(L):

i += 1
sum += L[i]

return sum

Problem: “IndexError: list index
out of range”

Source Code

66

EXERCISE
Possible causes

1. the expression is incorrect;

2. the expression is OK, but some
operand was assigned the wrong
value;

3. the expression is OK, its operands were
assigned the right values, but some
value got overwritten.

Which of these best describes the
cause of this bug?

QUESTION:

compute the sum of the elements
of a list L
def sumlist(L):

sum = 0
i = 0
while i <= len(L):

sum += L[i]
i += 1

return sum

Problem: “IndexError: list index
out of range”

def process(data):
assert data[“gdp”] != 0
assert data[“pop”] != 0
exports = get_export_info(data)
imports = get_import_info(data)
gdp = data[“gdp”]
pop = data[“pop”]
per_capita_gdp = gdp/pop

def main():
db = read_db()
process(db[“usa”])

main()

Source Code

67

EXERCISE
Possible causes

1. the expression is incorrect;

2. the expression is OK, but some
operand was assigned the wrong
value;

3. the expression is OK, its operands were
assigned the right values, but some
value got overwritten.

Which of these best describes the
cause of this bug?

QUESTION:

Problem: Divide-by-zero Error here

Data-related bugs: Debugging

Problem: An expression expr(x1, x2, … xn) evaluates to the
wrong value

Debugging:

68

do any of the operands
have an incorrect value?

is the most recent value
assigned to xj correct?

NO

the bug must be in the
logic of the expression
expr(…)

xj must be getting
overwritten somewhere:
find out where (print)

repeat this process at the
point where xj was assigned
a value:

xj = some_expr(y1, …, yk)

YES: xj is incorrect

NOYES

Debugging: working backwards

69

print(x)

wrong value printed:
data-related bug

Debugging: working backwards

70

print(x)

wrong value printed:
data-related bug

immediate cause: x’s value ▶

Debugging: working backwards

71

print(x)

wrong value printed:
data-related bug

immediate cause: x’s value ▶

x = y + z

root cause for x’s value

suppose that y's value is
incorrect, then: ▶

immediate cause: y’s value

Debugging: working backwards

72

print(x)

wrong value printed:
data-related bug

immediate cause: x’s value ▶

x = y + z

while v > 0:
y = …

root cause for x’s value

suppose that y's value is
incorrect, then: ▶

immediate cause: y’s value

root cause for y’s value
▶

immediate cause: v > 0

Debugging: working backwards

73

print(x)

wrong value printed:
data-related bug

immediate cause: x’s value ▶

x = y + z

while v > 0:
y = …

root cause for x’s value

suppose that y's value is
incorrect, then: ▶

immediate cause: y’s value

root cause for y’s value
▶

immediate cause: v > 0
control-related bug

Debugging: working backwards

74

print(x)

wrong value printed:
data-related bug

immediate cause: x’s value ▶

x = y + z

while v > 0:
y = …

root cause for x’s value

suppose that y's value is
incorrect, then: ▶

immediate cause: y’s value

root cause for y’s value
▶

immediate cause: v > 0
control-related bug

v = …

Source code

compute the absolute value of x
def abs(x):

if x < 0:
x = -x
return x

compute the sum of the absolute
values of the numbers in a list L
def sumlist_abs(L):

sum = 0
i = 0
while i < len(L):

sum += abs(L[i])
i += 1

return sum

Execution behavior

>>> sumlist_abs([-2, -3])

5

>>> sumlist_abs([2, 3])

File "sumlist.py", line 12

sum += abs(L[i])

TypeError: unsupported operand
types for +=: ‘int’ and ‘NoneType’

75

EXERCISE

• What is the immediate cause?

• What should we print out to identify the
root cause?

QUESTION:

File "sumlist.py", line 12

sum += abs(L[i])

TypeError: unsupported operand
types for +=: ‘int’ and ‘NoneType’

Source code

compute the absolute value of x
def abs(x):

if x < 0:
x = -x
return x

compute the sum of the absolute
values of the numbers in a list L
def sumlist_abs(L):

sum = 0
i = 0
while i < len(L):

sum += abs(L[i])
i += 1

return sum

Debugging process: step 0

76

SOLUTION

Immediate cause: one of the operands
of += has the wrong type (NoneType)

∴ its value must be wrong as well

TODOs for the next debugging step:

1. which operand?

2. where did it get its value?

TODOs for the next debugging step:

1. which operand?

‒ print out the operands of +=, i.e.,
sum and abs(L[i]), just before the
+= is evaluated

‒ check to see if OK

Source code

compute the absolute value of x
def abs(x):

if x < 0:
x = -x
return x

compute the sum of the absolute
values of the numbers in a list L
def sumlist_abs(L):

sum = 0
i = 0
while i < len(L):

sum += abs(L[i])
i += 1

return sum

Debugging process: step 1

77

SOLUTION

TODOs for the next debugging step:

1. which operand?

‒ print out the operands of +=, i.e.,
sum and abs(L[i]), just before the
+= is evaluated

‒ check to see if OK

 we find that abs(L[i]) is None

− this value is incorrect (immediate
cause)

Source code

compute the absolute value of x
def abs(x):

if x < 0:
x = -x
return x

compute the sum of the absolute
values of the numbers in a list L
def sumlist_abs(L):

sum = 0
i = 0
while i < len(L):

sum += abs(L[i])
i += 1

return sum

Debugging process: step 1

78

SOLUTION

TODOs for the next debugging step:

1. which operand?

‒ print out the operands of +=, i.e.,
sum and abs(L[i]), just before the
+= is evaluated

‒ check to see if OK

 we find that abs(L[i]) is None

− this value is incorrect (immediate
cause)

TODOs for the next debugging step:

‒ identify where this value came
from (root cause)

Source code

compute the absolute value of x
def abs(x):

if x < 0:
x = -x
return x

compute the sum of the absolute
values of the numbers in a list L
def sumlist_abs(L):

sum = 0
i = 0
while i < len(L):

sum += abs(L[i])
i += 1

return sum

Debugging process: step 1

79

SOLUTION

PROBLEM: abs(L[i]) is None

(immediate cause)

POSSIBLE CAUSES:

‒ the argument to abs() has the
wrong value

‒ the argument to abs() is OK but
the value returned is wrong

DEBUGGING ACTION:

‒ print out the argument L[i] and
the return value abs(L[i])
at this point

Source code

compute the absolute value of x
def abs(x):

if x < 0:
x = -x
return x

compute the sum of the absolute
values of the numbers in a list L
def sumlist_abs(L):

sum = 0
i = 0
while i < len(L):

sum += abs(L[i])
i += 1

return sum

Debugging process: step 2

80

SOLUTION

Debugging process: Recap

Problem: An expression expr(x1, x2, … xn) evaluates to the
wrong value (in this case: sum += abs(L[i]))

Debugging:

81

do any of the operands
have an incorrect value?

is the most recent value
assigned to xj correct?

NO

the bug must be in the
logic of the expression
expr(…)

xj must be getting
overwritten somewhere:
find out where (print)

repeat this process at the
point where xj was assigned
a value:

xj = some_expr(y1, …, yk)

YES: xj is incorrect

NOYES

Debugging process: Recap

Problem: An expression expr(x1, x2, … xn) evaluates to the
wrong value (in this case: sum += abs(L[i]))

Debugging:

82

do any of the operands
have an incorrect value?

is the most recent value
assigned to xj correct?

NO

the bug must be in the
logic of the expression
expr(…)

xj must be getting
overwritten somewhere:
find out where (print)

repeat this process at the
point where xj was assigned
a value:

xj = some_expr(y1, …, yk)

YES: xj is incorrect

NOYES

Debugging process: Recap

Problem: An expression expr(x1, x2, … xn) evaluates to the
wrong value (in this case: sum += abs(L[i]))

Debugging:

83

do any of the operands
have an incorrect value?

is the most recent value
assigned to xj correct?

NO

the bug must be in the
logic of the expression
expr(…)

xj must be getting
overwritten somewhere:
find out where (print)

repeat this process at the
point where xj was assigned
a value:

xj = some_expr(y1, …, yk)

YES: xj is incorrect

NOYES

Debugging process: Recap

Problem: An expression expr(x1, x2, … xn) evaluates to the
wrong value (in this case: sum += abs(L[i]))

Debugging:

84

do any of the operands
have an incorrect value?

is the most recent value
assigned to xj correct?

NO

the bug must be in the
logic of the expression
expr(…)

xj must be getting
overwritten somewhere:
find out where (print)

repeat this process at the
point where xj was assigned
a value:

xj = some_expr(y1, …, yk)

YES: xj is incorrect

NOYES

>>> myfun(6, 10, [2, 3])

File "myfun.py", line 13

sum += abs(L[i])

TypeError: unsupported operand
types for +=: ‘int’ and ‘NoneType’

Source code

def myfun(u, v, L):
payment = sum = 0
i = 0
while i < len(L):

mdiff = max(L) – min(L)
if mdiff > 5:

p = u + v
else:

p = u – v
if p < 0:

p = 0
payment += 2 * p + sum
sum += abs(L[i])
i += 1

return payment

Execution behavior

85

EXERCISE

Suppose we find that the immediate cause
is that abs(L[i]) is None

• To determine the root cause: should we
print the value of p at ①?

• Why or why not?

QUESTION:

①

>>> main()

AssertionError

Source code

def process(data):
assert data[0] is not None
check_values(data)
names = get_names(data)
values = get_values(data)
pn = proc_names(names)
pv = proc_values(values)
assert data[0] is not None
print_output(pn, pv, data)

def main():
data = read_data()
process(data)

Execution behavior

86

EXERCISE

• What is the immediate cause?

• What should we do to identify the root
cause?

QUESTION:

here

Bugs:
control-related

vs.
data-related

87

Control-related vs. data-related bugs

• Control-related bugs: refers to incorrect execution of
statements

‒ e.g., infinite loop; statements being executed when they
shouldn't; wrong order of statements;

• Data-related bugs: refers to incorrect computation of
data values

‒ e.g., incorrect expression; wrong values for operands

• Sometimes, a bug can be treated as either control-
related or data-related

88

89

Example

sum the elements of
a list L
def sumlist(L):

sum = 0
i = 0
while i < len(L):

i += 1
sum += L[i]

return sum

>>> sumlist([1,2,3,4])
File "sumlist.py", line 8

sum += L[i]
IndexError: list index out of range

90

Example

sum the elements of
a list L
def sumlist(L):

sum = 0
i = 0
while i < len(L):

i += 1
sum += L[i]

return sum

def sumlist(L):

sum = 0

i = 0

while i < len(L):

sum += L[i]

i += 1

return sum

>>> sumlist([1,2,3,4])
File "sumlist.py", line 8

sum += L[i]
IndexError: list index out of range

Control-related bug:
statement order is
wrong
Fix: change statement
order

Control-related bug:
statement order is
wrong
Fix: change statement
order

91

Example

sum the elements of
a list L
def sumlist(L):

sum = 0
i = 0
while i < len(L):

i += 1
sum += L[i]

return sum

def sumlist(L):

sum = 0

i = 0

while i < len(L):

sum += L[i]

i += 1

return sum

def sumlist(L):

sum = 0

i = 0

while i < len(L):

i += 1

sum += L[i−1]

return sum

>>> sumlist([1,2,3,4])
File "sumlist.py", line 8

sum += L[i]
IndexError: list index out of range

Control-related bug:
statement order is
wrong
Fix: change statement
order

Data-related bug:
expression logic is
wrong
Fix: change expression
logic

Control-related bug:
statement order is
wrong
Fix: change statement
order

Summary

92

Summary
• "Immediate cause" vs. "root cause" of a bug:

‒ immediate cause: the problem you observe
‒ root cause: the problem you infer as giving rise to it

• Broadly speaking, bugs can be of two types:
‒ control related: incorrect execution order of statements
‒ data related: incorrect values computed for expressions

• Often,* control-related bugs arise from incorrectly
computed values

• Locating a bug involves working back (iteratively) from
the observed immediate cause to the ultimate root
cause

93
* not always

