
CSc 120
Introduction to Computer Programming II

13: Exceptions



EXERCISE
Given the following code:

def foo():
n = int(input("Enter a number:"))
print("n = ", n)
print("reciprocal = ", str(1/n))

What happens when n is 2?
What happens when n is 0?

2



Errors and exceptions in Python
A Python program can have two kinds of errors:*

3

Syntax errors:
• the code is not legal Python 

syntax
• detected before the 

program is run

Exceptions:
• the code is legal Python 

syntax
• but something goes wrong 

when the program is run

* This does not count logic errors, which the Python system cannot detect

An exception is an error that is only detected at run time.



Some common exceptions
• FileNotFoundError

‒ file name or directory cannot be found
• IndexError

‒ an index into a string or list is out of bounds
• KeyError

‒ a non-existent key used to access a dictionary
• TypeError

‒ arguments to an operation are of the wrong type
• ValueError

‒ type is OK but the value is not.  E.g.: int("abc")
• ZeroDivisionError

‒ divide by 0 error
4



Handling exceptions

5

exception 
occurs

catch and 
handle the 
exception

exception 
may occur

try raise catch



Handling exceptions
Example:

try:
code that might raise an exception

except:
code to handle the exception

6



Handling exceptions
Example:

try:
infile = open(filename)

except:
print("could not open file: " + filename)

7



Handling exceptions
Example:

>>> f = open("notthere.txt")
Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>
f = open("notthere.txt")

FileNotFoundError: [Errno 2] No such file or directory: 
'notthere.txt'
>>> 

8



Handling exceptions
Example:

>>> f = open("notthere.txt")
Traceback (most recent call last):
File "<pyshell#6>", line 1, in <module>
f = open("notthere.txt")

FileNotFoundError: [Errno 2] No such file or directory: 'notthere.txt'
>>> 
>>> try:

f = open("notthere.txt")
except:

print("Error: file not found")
Error: file not found
>>> 

9



EXERCISE - Whiteboard
Add try and except statements to handle an exception 
that may occur.

def foo():
n = int(input("Enter a number:"))
print("n = ", n)
print("reciprocal = ", str(1/n))

10

try:
code that might raise an exception

except:
code to handle the exception



EXERCISE-sol

def foo():
try:

n = int(input("Enter a number:"))
print("n = ", n)
print("reciprocal = ", str(1/n))

except:
print("Divide-by-zero error")

11



EXERCISE-sol?
If you run the code and enter a non-digit value, what 
happens?
What's the problem?

def foo():
try:

n = int(input("Enter a number:"))
print("n = ", n)
print("reciprocal = ", str(1/n))

except:
print("Divide-by-zero error")

12



• This will catch any exception raised 
in the try block
• This may not always be desirable

Handling exceptions
Example:

try:
code that might raise an exception

except:
code to handle the exception

13



Handling exceptions

14



Handling exceptions

15



Handling exceptions

16



Handling exceptions

17

The file was read!
The error message doesn't make sense

CULPRIT: Catching all exceptions
(BAD STYLE)



Handling exceptions

18

Deals with a specific exception

Does not mislead on 
other exceptions 



EXERCISE-Whiteboard
Modify the code to catch a ZeroDivisionError.

def foo():
try:

n = int(input("Enter a number:"))
print("n = ", n)
print("reciprocal = ", str(1/n))

except:
print("ERROR: Divide-by-zero error")

19



EXERCISE-Sol
Modify the code to catch a ZeroDivisionError.

def foo():
try:

n = int(input("Enter a number:"))
print("n = ", n)
print("reciprocal = ", str(1/n))

except ZeroDivisionError:
print("ERROR: Divide-by-zero error")

20



Handling multiple exceptions 1

21

Handle multiple exceptions 
in the same way

Behavior for both 
exceptions is the same



Handling multiple exceptions 2

22

Handle multiple exceptions 
in different ways



Handling multiple exceptions 2

23



Exception propagation

24

an unhandled exception is 
passed along from a 
function to its caller until 
(a) it is handled; or (b) it 
reaches the top level of 
execution



Dealing with exceptions
• If possible and appropriate, try to recover from the 

exception
‒ depends on the problem spec, nature of the exception

• If recovery is not possible, exit the program

import sys
...
sys.exit(1)

25

exits the program with error code 1 
(this indicates that an error occurred to any 
other program that may be using this program)



Example
import sys

def read_input(filename):
try:

fileobj = open(filename)
except IOError:

print(“ERROR: could not open file “ + filename)
sys.exit(1)

for line in fileobj:
...process contents of file...

26



Else clause (optional)

27

...

for fname in names_list:

try:

f = open(fname)

except IOError:

print("cannot open ", fname)

else:

print("length of", fname, "is", len(f.readlines()))

f.close()

Executed if no exceptions are raised.



Exceptions: summary
• Avoid naked except if at all possible

‒ catch and handle specific exceptions by name
‒ other exceptions will propagate up to the caller

• Keep the try … except separation as small as 
possible

‒ makes the code easier to understand
‒ avoids inadvertent masking of exceptions

• Recover from the exception if possible; otherwise 
exit with error code 1

28



EXERCISE-ICA39

30

Do all problems. 


