
CSc 120
Introduction to Computer

Programming II

15: Python extras

lambda expressions
• Anonymous functions can be made with the

lambda keyword
• Normally we define the name of a function:

def double(x):
return x * 2

• Anonymous version:
lambda x: x * 2

• This is a syntactic shorthand in Python
• Restricted to single expressions

2

lambda expressions

• Origin is the lambda calculus (Church, 1936-40)
‒ The basis of functional programming languages
‒ Take 372! (Comparative Programming Languages)

• Lambda functions can be used wherever a function
object is valid
• Functions are 1st class objects

‒ can be passed as arguments
‒ can be return as results

3

lambda expressions
• Example:
>>> def make_incrementer(n):

return lambda x: x + n

>>> f = make_incrementer(10) # lambda x: x + 10
>>> type(f)
<class 'function'>
>>> f(2)
12
>>> f(100)
110
>>>

4

lambda expressions
• Example:
>>> g = make_incrementer(1)
>>>
>>> g
<function make_incrementer.<locals>.<lambda> at 0x7f8c72119310>
>>> g(2)
3
>>> g(100)
101
>>>

5

lambda expressions
• Lambda functions are often used with the following

built-in functions
‒ filter
‒ map
‒ reduce
‒ sort

• We’ll look at filter:
‒ filter(function, sequence)

o applies function to each element of sequence

6

filter
• filter is used to filter out elements of a sequence
• filter(f, sequence)

o Takes a function f and a sequence sequence
o the function f returns a boolean
o the function f is applied to every element of sequence; if it

returns True, the element is added to the result sequence
o returns a filter object
o can make this a list

7

filter
• Example: Filter out the even numbers
>>> a = [2, 7, 9, 32, 6, 14]

>>> result = list(filter(lambda x: x % 2 == 0, a))
>>> result
[2, 32, 6, 14]
>>>

8

EXERCISE

>>> alist = ["able", "dig", "byte", "eye"]
>>> list(filter(lambda w: len(w) % 2 == 1, alist))

9

what do you think will be printed here?

EXERCISE-whiteboard
>>> alist = ["able", "dig", "byte", "eye"]
>>>

10

Use filter on alist to produce the list of words that start
with a vowel, i.e.,

['able', 'eye']

Prior example:
list(filter(lambda w: len(w) % 2 == 1, alist))

EXERCISE-SOL
>>>alist = ["able", "dig", "byte", "eye"]
>>>list(filter(lambda w: w[0] in "aeiou", alist)
['able', 'eye']

11

Iterators
• a for loop iterates over a sequence of values:

for elem in "abcde "
print(elem)

• works for any sequence of values
‒ lists, strings, dictionaries, tuples, sets
‒ any container type – list, dictionary, tuple, set

• the for statement calls a function iter() on the
sequence type
• the iter() function creates and returns an iterator

object

12

Iterators
• Iterator:

‒ a Python object that can be iterated upon
‒ an object that returns data, one element at a time
‒ when there are no more elements, raises a StopIteration

exception

13

Iterators
• the iter() method creates an iterator object
• can accept any type that has a sequence of values
• an iterator implements two special methods

_ _ iter_ _() : returns an iterator object

_ _ next_ _() : produces the next value in the iterator sequence
raises StopIteration when finished

• the above is the iterator protocol
• iterators can be called outside of for loops

14

Iterators: Example
>>> alist = [2, 4, 6, 8]
>>>
>>> x = iter(alist) # create an iterator
>>>
>>> next(x) # use next to get the next element in the sequence
2
>>> next(x)
4
>>> next(x)
6
>>> next(x)
8
>>> next(x)
Traceback (most recent call last):
File "<pyshell#28>", line 1, in <module>
next(x)

StopIteration
>>>

15

EXERCISE-whiteboard
>>> romans = {"I": 1, "V": 5, "X": 10, "L": 50}

16

Create an iterable object from the dictionary romans.
Using next(), print the first two keys in the dictionary,
one at a time.

the for loop
• the for loop can be used for any type that has a

sequence of values (an iterable)
for element in iterable:

do something with element
• implementation

iter_obj = iter(iterable)

infinite loop
while True:

try:
element = next(iter_obj)
do something with element

except StopIteration:
break

17

the for loop
• the for loop can be used for any type that has a

sequence of values (an iterable)
for element in iterable:

do something with element
• implementation

iter_obj = iter(iterable)

infinite loop
while True:

try:
element = next(iter_obj)

do something with element
except StopIteration:

break

18

Use of try/except!

user-defined iterators
• define a class for the iterator
• must define the method _ _ next_ _()

returns the next value in the sequence

• must define the method _ _ iter _ _ ()
returns an object that has a next() method
just return self

• Ex: let's write an iterator that reverses a sequence
of values called Reverse()
• Let’s see how to use it first

19

user-defined iterators
>>> rev = Reverse("aeiou")
>>>
>>> next(rev)
'u'
>>> next(rev)
'o'
>>> for c in rev:

print(c)

i
e
a
>>>

20

user-defined iterators
an iterator to reverse a sequence of values
class Reverse:

def __init__(self, data):
self._data = data
self._index = len(data) # start the index at the end and

decrement

def __iter__(self): # define the iterator
return self

def __next__(self): # define next
if self._index == 0:

raise StopIteration
self._index = self._index - 1
return self._data[self._index] # return the next value in the sequence

21

Generators

22

• generators are a syntactic mechanism for creating
iterators

• generator
‒ written like a function
‒ uses yield instead of return

• each time next() is called, the generator resumes
where it left off

Generators

23

• the iter() and next() methods are created
automatically
• the generator version of reverse:

def reverse_gen(data):
for index in range(len(data)-1, -1, -1):

yield data[index]

Generators

24

>>> def reverse_gen(data):
for index in range(len(data)-1, -1, -1):

yield data[index]
>>> reverse_gen
<function reverse_gen at 0x101183510>

>>> for char in reverse_gen("abcde"):
print(char)

e
d
c
b
a
>>>

Python Language Design

• Python was designed by Guido Van Rossum
‒ Developed in the mid 80’s
‒ Primary influence was the language ABC (was used for

teaching/prototyping)
‒ Guido also acknowledges the influence of Icon

‒ The Icon Programming Language:
‒ Designed by Ralph Griswold (in our CS dept.!)
‒ Has generators
‒ The language has implicit backtracking

o (We’ll see backtracking Wednesday)

25

EXERCISE-ICA-41
Do all problems.

26

